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This paper presents a novel approach for pointwise estimation of multivariate density functions on known domains
of arbitrary dimensions using nonparametric local polynomial estimators. Our method is highly flexible, as it
applies to both simple domains, such as open connected sets, and more complicated domains that are not star-
shaped around the point of estimation. This enables us to handle domains with sharp concavities, holes, and local
pinches, such as polynomial sectors. Additionally, we introduce a data-driven selection rule based on the general
ideas of Goldenshluger and Lepski. Our results demonstrate that the local polynomial estimators are minimax
under a 𝐿2 risk across a wide range of Hölder-type functional classes. In the adaptive case, we provide oracle
inequalities and explicitly determine the convergence rate of our statistical procedure. Simulations on polynomial
sectors show that our oracle estimates outperform those of the most popular alternative method, found in the
sparr package for the R software. Our statistical procedure is implemented in an online R package which is
readily accessible.

Keywords: Adaptive estimation; complicated domain; concave domain; local polynomial; minimax;
nonparametric density estimation; oracle inequality; pinched domain; pointwise risk; polynomial sector

1. Introduction
In practice, estimating a probability density function near or at the boundary of its support D is often
challenging. This issue is particularly prominent in standard kernel density estimators, which suffer
from a well-known bias that negatively impacts their performance. In situations where D represents a
geometrically ‘simple’ domain in R𝑑 , this behavior is more indicative of limitations in these statistical
procedures rather than an inherently difficult estimation problem. Consequently, dedicated estimators
have been devised to reduce or eliminate the bias term, providing more accurate density estimates.

For instance, Bernstein estimators, introduced by Vitale (1975) and studied further among others by
Babu and Chaubey (2006), Gawronski and Stadtmüller (1981), Ghosal (2001), Petrone (1999), Petrone
and Wasserman (2002), utilize a specific choice of discrete kernel function whose shape adapts locally
to the support of the density and leads to reduced bias near the boundaries. Asymmetric kernel esti-
mators, put forward independently by Aitchison and Lauder (1985) and Chen (1999), extend the same
idea to smooth kernels. The reflection method, proposed by Schuster (1985) and further investigated
by Cline and Hart (1991), involves extending the support of the density function symmetrically beyond
the observed data range and incorporating reflected data points into the estimation process. Boundary
kernel estimators, initially proposed by Gasser and Müller (1979) and further refined by Gasser, Müller
and Mammitzsch (1985), Jones (1993), Müller (1991), Zhang and Karunamuni (1998, 2000), assign
higher weights to data points located near the boundaries, effectively giving greater emphasis to the
boundary regions during estimation and improving accuracy. Local polynomial smoothers with vari-
able bandwidths, introduced by Fan and Gijbels (1992) in the regression context, see also Cheng, Fan
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and Marron (1997), Fan and Gijbels (1996), fit low-degree polynomials to local neighborhoods of data
points, adaptively adjusting the polynomial degree and bandwidth to mitigate boundary bias. Other
notable techniques include smoothing splines (Gu, 1993, Gu and Qiu, 1993), generalized jackknifing
(Jones, 1993, Jones and Foster, 1996), and the transformation technique (Marron and Ruppert, 1994,
Ruppert and Cline, 1994), which applies a transformation to the data before smoothing on a more suited
domain. A combination that leverages the benefits of both reflection and transformation was proposed
by Zhang, Karunamuni and Jones (1999). For a modern review of kernel density estimation methods
and bandwidth selection for spatial data, refer to Davies, Marshall and Hazelton (2018).

In spite of the remarkable strides made throughout the years to alleviate the boundary bias of kernel
density estimators, it often comes at the cost of producing other issues such as estimators that lack local
adaptivity (i.e., are sensitive to outliers, generate spurious bumps, etc.), inadequate data-driven band-
width selection rules (e.g., plug-in methods with reference/pilot densities that spill over boundaries),
or density estimates that are not bona fide density functions (i.e., that are negative in some regions or
do not integrate to one). Only recently, some methods have been able to address all these concerns at
once.

For example, Botev, Grotowski and Kroese (2010) propose an adaptive kernel density estimator
which is the solution, in a space-scale setting, to the Fokker-Planck partial differential equation (PDE)
associated with an Itô diffusion process having the empirical density function as initial condition. The
scale variable plays the role of the bandwidth and the shape specifics of the domain are taken into ac-
count directly using the boundary conditions of the PDE. Their proposed estimator is locally adaptive,
has a bandwidth selection procedure which is free of the so-called normal reference rules (and thus is
truly nonparametric), deals well with boundary bias and is always a bona fide density function. Fur-
ther, the overall computational cost remains low. Yet, as pointed out by Ferraccioli et al. (2021), their
estimator is unable to handle domains with complicated geometries.

In recent efforts to tackle the above concerns regarding kernel density estimators, specific focus has
been directed towards estimating multivariate density functions supported on domains with compli-
cated geometries. Notably, these efforts include Gaussian field approaches Bakka et al. (2019), Lind-
gren, Rue and Lindström (2011), Niu et al. (2019), PDE regularization schemes Arnone et al. (2022),
Azzimonti et al. (2014, 2015), Ferraccioli et al. (2021), Sangalli (2021), shape constraints Feng et al.
(2021), Xu and Samworth (2021), soap film smoothing Wood, Bravington and Hedley (2008), spline
methods Guillas and Lai (2010), Lai and Schumaker (2007), Lai and Wang (2013), Miller and Wood
(2014), Ramsay (2002), Sangalli, Ramsay and Ramsay (2013), Wang and Ranalli (2007), Yu et al.
(2021), Zhou and Pan (2014), diffusion kernels Barry and McIntyre (2011, 2020), McIntyre and Barry
(2018), McSwiggan, Baddeley and Nair (2017), and other hybrid methods such as the complex region
spatial smoother (CReSS) of Scott-Hayward et al. (2015) based on improved geodesic distance estima-
tion.

Unfortunately, all these methods are either intrinsically adapted for global estimation instead of
pointwise estimation (and thus cannot always uphold the best choice of bandwidth near specific points),
or they have only been developed, implemented and studied for spatial data in two or three dimensions.
For instance, the state of the art PDE regularization method on Euclidean spaces is the one by Ferracci-
oli et al. (2021). In that paper, the authors introduce a log-likelihood approach with Laplacian operator
regularization that penalizes high local curvatures and thus controls the global roughness of the esti-
mates. Their method can handle complicated shapes, sharp concavities and holes. They also improve
on the method of Botev, Grotowski and Kroese (2010) by discretizing the aforementioned Fokker-
Planck equation and solving numerically using a forward Euler integration scheme, which allows for
complicated domain shapes. The problem is that their global choice of regularization parameter limits
refinements in the vicinity of any particular point in the domain. Furthermore, their general method
relies crucially on a triangulation of the space, which is only numerically viable in low dimensions.



Local polynomial density estimation on complicated domains 3

The other approaches have the same issue, as they also rely on a global regularization or a low domain
dimension. For the few methods in arbitrary dimensions (e.g., Barry and McIntyre (2020), Niu et al.
(2019)), some face practical challenges or lack theoretical development.

The present paper addresses these gaps in the literature by introducing a new adaptive nonparamet-
ric local polynomial estimator suitable for the pointwise estimation of multivariate density functions
supported on known domains of arbitrary dimensions and investigating its theoretical properties and
practical implementation. Our method is highly flexible, as it applies to both simple domains, such as
open connected sets, and more complicated domains that are not star-shaped around the point of esti-
mation. This enables us to deal with domains containing sharp concavities, holes, and local pinches,
such as polynomial sectors. To elaborate, our approach involves estimating the density function locally
using the minimizer of a continuous kernel-weighted least-squares problem on a space of polynomi-
als. Our selection procedure follows the general ideas of Lepskii (1991) and Goldenshluger and Lepski
(2008, 2009, 2011, 2014). It consists of jointly optimizing the polynomial degree and bandwidth over a
discrete set and selecting the pair that minimizes the sum of upper bounds on the bias and a penalized
version of the standard deviation. Importantly, our estimator does not require any tuning parameters,
making it genuinely nonparametric. Moreover, it addresses the classical issues of kernel density estima-
tors mentioned earlier, as it is locally adaptive, exhibits relatively small boundary bias regardless of the
domain’s shape, and is asymptotically a bona fide density function. For earlier advancements in density
estimation on simple bounded domains using a similar Goldenshluger-Lepski selection procedure, re-
fer to Bertin, El Kolei and Klutchnikoff (2019), Bertin and Klutchnikoff (2014), and also to Bertin and
Klutchnikoff (2017), Bertin et al. (2020) under the assumption of weakly dependent observations.

Although our bandwidth selection procedure differs significantly, a similar concept was recently
developed by Cattaneo, Jansson and Ma (2020) for estimating univariate density functions using lo-
cal polynomials. Their approach involves taking the slope factor of the linear monomial in a kernel-
weighted 𝐿2 projection of the empirical cumulative distribution function (cdf) onto a polynomial space.
In simpler terms, they project the cdf and identify the derivative of the projection (i.e., the density es-
timator), while our method directly projects the density function itself. Their estimator is boundary
adaptive, does not require prior knowledge of the boundary points, and always yields a valid density
function. Moreover, their implementation is simple, requiring no specific data modifications or addi-
tional tuning parameters. For the R software implementation, refer to Cattaneo, Jansson and Ma (2022),
and for an extension of their method to conditional univariate density functions, see Cattaneo et al.
(2023). However, one serious limitation of their method is its unclear generalizability to multivariate
density functions, as explained in the following remark.

Remark 1. In private email communications, Cattaneo, Jansson, and Ma informed us that they had pre-
viously considered a multivariate version of their estimator but were unable to determine the asymptotic
variance expression. Consequently, they could not implement the pointwise approximate MSE-optimal
bandwidth selection procedure. We attempted to address this issue ourselves but were unsuccessful.
Thus, the development of a multivariate version of their estimator remains an open problem, meriting
further research.

Here is an outline of the paper. Section 2 provides prerequisite definitions and information on the
pointwise 𝐿2 risk measure, domains and Hölder classes considered for density functions, as well as
the concept of adaptive rate of convergence. Section 3 presents a detailed description of our statistical
procedure, which involves a kernel-weighted 𝐿2 projection of the density function onto a polynomial
space, and the application of the Goldenshluger-Lepski method for the joint selection of the polynomial
degree and bandwidth. Section 4 states our main results. For the base local polynomial estimator, this
corresponds to explicit bounds on its bias and variance, and its minimaxity on simple and complicated
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domains. For our full statistical procedure (i.e., including the selection procedure), we derive an oracle-
type inequality and the estimator is shown to achieve the optimal adaptive rate of convergence on simple
and complicated domains. To aid understanding, the results for complicated domains are specifically
stated for polynomial sectors. The case of unknown compact convex domains is also briefly discussed
in Section 4.4. Section 5 complements the theoretical results with simulations on polynomial sectors.
Our oracle estimates are shown to outperform those of the most popular alternative method, found in
the sparr package Davies and Marshall (2023) for the R software. For convenience, our statistical
procedure is implemented in an online R package called densityLocPoly, see Bertin, Klutchnikoff
and Ouimet (2024). The proofs are all deferred to the appendices. Specifically, Appendix A contains
preliminary technical lemmas and their proofs, whereas Appendix B delves into the main proofs.

2. Framework

Define the domain D as the closure of a nonempty open subset of R𝑑 endowed with the sup norm,
denoted by ‖ · ‖∞. Our focus will be on studying our estimator locally at a point 𝑡 ∈ D, inside its
surrounding neighborhoods of radius ℎ ∈ (0,∞),

V(ℎ) =
{
𝑢 ∈ R𝑑 : 𝑡 + 𝑢 ∈ D and ‖𝑢‖∞ ≤ ℎ

}
= (D − 𝑡) ∩ (ℎΔ),

where Δ = [−1,1]𝑑 . We assume that there exists a parameter 𝜌 ∈ (0, 𝑒−1] such that the set V(𝜌) is a
neighborhood of the origin for the topology on D inherited from R𝑑 . Since D, 𝑑, 𝑡 and 𝜌 are fixed
throughout the paper, the dependence on these quantities is often omitted for readability.

For 𝑛 ∈ N = {1,2, . . .}, let X𝑛 = (𝑋1, . . . , 𝑋𝑛) be a vector of 𝑛 independent copies of a random vari-
able 𝑋 which is supported on D and has a probability density function 𝑓 with respect to the Lebesgue
measure on R𝑑 , hereafter denoted by Leb(·). Our goal is to estimate the density function 𝑓 at the fixed
point 𝑡 ∈ D. By estimator, we mean any map 𝑓 = 𝑆 ◦X𝑛 such that 𝑆 : D𝑛 → RR𝑑

is Borel-measurable.
The accuracy of such an estimator is measured by the pointwise risk

𝑅𝑛 ( 𝑓 , 𝑓 ) =
(
E

[{
𝑓 (𝑡) − 𝑓 (𝑡)

}2
] )1/2

,

where E denotes the expectation with respect to the probability measure P of the random sample X𝑛.

Remark 2. Utilizing a pointwise 𝐿2 risk measure is not inherently essential for deriving our findings.
However, this choice facilitates the mathematical analysis across various proofs by decomposing the
squared risk into two distinct components: the squared bias and the variance:{

𝑅𝑛 ( 𝑓 , 𝑓 )
}2

=
[
E
{
𝑓 (𝑡)

}
− 𝑓 (𝑡)

]2 + Var
{
𝑓 (𝑡)

}
.

This breakdown simplifies the determination of a suitable bandwidth parameter when seeking the op-
timal convergence rate of our statistical procedure. Such arguments feature prominently in the proofs
of our minimax and adaptivity results; see Propositions 4.4 and 4.6, as well as Theorems 4.5 and 4.7.
More generally, one could explore a pointwise 𝐿𝑝 risk measure for a fixed 𝑝 ≥ 1. However, this ap-
proach necessitates additional steps at various junctures to accommodate the imperfect decomposition:

E
[{
𝑓 (𝑡) − 𝑓 (𝑡)

}𝑝] ≤ 2𝑝−1 ×
{��E{

𝑓 (𝑡)
}
− 𝑓 (𝑡)

�� + E
( [
𝑓 (𝑡) − E

{
𝑓 (𝑡)

}] 𝑝)}
.

For instance, we would need to apply Khintchine-type inequalities to estimate the second expectation
on the right-hand side in terms of the variance. Modifications to the proof of Theorem 4.3 would also
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be required, shifting the focus from E(𝑇2) to E(𝑇 𝑝), etc. While it is possible to consider a more general
risk measure, doing so would inevitably convolute the mathematical methods and ideas used in deriving
our results with additional technical intricacies. Therefore, this avenue is not further explored here and
is left open for future investigation.

Since there is no ambiguity, we use P and E instead of the more cumbersome notations P𝑓 ,𝑛 and
E 𝑓 ,𝑛. However, we will maintain the dependency on 𝑛 for the pointwise risk 𝑅𝑛 as we will investigate
its asymptotic behavior in Section 4. Specifically, we will study the minimax and adaptive pointwise
estimation of 𝑓 over a large collection of Hölder-type functional classes. The remainder of this section
covers the fundamental concepts that are used in this paper.

2.1. Hölder-type classes

First, consider a collection of polynomials, each having a degree which is less than or equal to a speci-
fied integer.

Definition 1. Let 𝑚 ∈ N0 =N∪ {0} and define

P𝑚 = Span
(
𝜑𝛼 : 𝛼 ∈ N𝑑

0 and |𝛼 | ≤ 𝑚
)
,

where, for any 𝑢 ∈ R𝑑 , we have the monomials

𝜑𝛼 (𝑢) =
𝑑∏
𝑗=1

𝑢
𝛼𝑗

𝑗
with |𝛼 | =

𝑑∑︁
𝑗=1

𝛼 𝑗 .

In particular, note that 𝜑0 ≡ 1.

Second, for any smoothness parameter 𝑠 ∈ (0,∞) and any Lipschitz constant 𝐿 ∈ (0,∞), define
the Hölder-type functional class Σ(𝑠, 𝐿) inside which a density function 𝑓 can be approximated by a
polynomial of prescribed degree in a neighborhood of 𝑡 ∈ D.

Definition 2. Let (𝑠, 𝐿) ∈ (0,∞)2 be given. A density function 𝑓 : D → R belongs to the Hölder class
Σ(𝑠, 𝐿) if there exists a polynomial 𝑞 ∈ PT𝑠U such that, for any 𝑢 ∈ V(𝜌),

| 𝑓 (𝑡 + 𝑢) − 𝑞(𝑢) | ≤ 𝐿‖𝑢‖𝑠∞. (2.1)

Here, T𝑠U denotes the greatest integer less than 𝑠. In particular, T𝑠U = 𝑠 − 1 if 𝑠 ∈ N.

Remark 3. The functional class Σ(𝑠, 𝐿) is not commonly used in statistics. However, we believe that
it offers more flexibility than classical Hölder spaces in the context of a domain D with a complicated
boundary. A few comments are in order:

1. Knowing that a density function 𝑓 belongs to the Hölder class Σ(𝑠, 𝐿) only provides local infor-
mation (in a neighborhood of 𝑡) about the regularity of 𝑓 . Note also that the polynomial 𝑞 satisfies
𝑞(0) = 𝑓 (𝑡).

2. If the partial derivatives 𝐷𝛼 𝑓 = 𝜕 |𝛼 | 𝑓 /𝜕𝑥𝛼1
1 · · · 𝜕𝑥𝛼𝑑

𝑑
exist for all |𝛼 | ≤ T𝑠U and if the interior of

V(𝜌), in the topology of R𝑑 , is star-shaped with respect to the origin, then the Taylor polynomial
of 𝑓 at 𝑡 can be substituted for 𝑞 in (2.1). In particular, this is true if the interior of V(𝜌) is an
open convex subset of R𝑑 that contains the origin.
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3. The existence of 𝑞 does not imply the existence of directional derivatives for 𝑓 . In particular, for
some points on the boundary of the domain D, the partial derivatives (in the directions given
by the canonical basis) may not even make sense. Let us give two simple examples of densities
defined on a disk sector to illustrate these assertions. Define

D =

{
(𝑟 cos 𝜃, 𝑟 sin 𝜃) ∈ R2 : 0 ≤ 𝑟 ≤ 1,

𝜋

6
≤ 𝜃 ≤ 𝜋

3

}
.

The density function 𝑓1 (𝑥, 𝑦) = 12/𝜋 × 1D (𝑥, 𝑦) is constant on D, but the partial derivatives
do not exist at 0 ∈ D. Similarly, the density function 𝑓2 (𝑥, 𝑦) = 𝐴𝑔(𝑥 + 𝑦)1D (𝑥, 𝑦), where 𝑔(𝑢) =
1+𝑢+𝑢2 +𝑢3 sin(1/𝑢) and 𝐴 is a normalization constant, can be approximated in a neighborhood
of 0 ∈ D by a polynomial of degree 2, even if no directional derivatives of order 2 exist at the
origin.

Remark 4. Because the degrees of the polynomials in the basis PT𝑠U are restricted by the value T𝑠U
across all dimensions, the functional class Σ(𝑠, 𝐿) can be categorized as isotropic. One might ponder
the possibility of defining an anisotropic extension of Σ(𝑠, 𝐿) to provide greater flexibility. Here is one
approach: For any integers 𝑚1, . . . , 𝑚𝑑 ∈ N0, define the new polynomial basis

P𝑚1 ,...,𝑚𝑑
= Span

(
𝜑𝛼 : 𝛼 ∈ N𝑑

0 and 𝛼𝑖 ≤ 𝑚𝑖 ∀𝑖 ∈ {1, . . . , 𝑑}
)
.

Then, for any smoothness parameters 𝑠1, . . . , 𝑠𝑑 ∈ (0,∞) and any Lipschitz constant 𝐿 ∈ (0,∞), let the
new anisotropic Hölder class Σ(𝑠1, . . . , 𝑠𝑑 , 𝐿) be defined by the polynomials 𝑞 ∈ PT𝑠1U,...,T𝑠𝑑U such
that, for any 𝑢 ∈ V(𝜌),

| 𝑓 (𝑡 + 𝑢) − 𝑞(𝑢) | ≤ 𝐿 ( |𝑢1 |𝑠1 + · · · + |𝑢𝑑 |𝑠𝑑 ).

This new definition would naturally lead in Section 3 to the adoption of a more general parameter
𝛾 = (𝑚1, . . . , 𝑚𝑑 , ℎ1, . . . , ℎ𝑑) for our adaptive statistical procedure, where the 𝑚𝑖’s and ℎ𝑖’s specify the
estimator’s smoothness and scale of estimation in each dimension, respectively. Consequently, numer-
ous technical adjustments would be necessary in the statements of the results and their proofs, such
as the additivity of the bias terms ℎ

𝛽𝑚𝑖
(𝑠𝑖 )

𝑖
in Proposition 4.1. While the conceptual framework would

remain largely unchanged, these technical modifications would obscure the mathematical methodolo-
gies and ideas underpinning the derivation of the new results. This avenue is not further explored here,
remaining open for future research. For recent advancements in multivariate density estimation within
an anisotropic framework, refer to, e.g., Ammous, Dedecker and Duval (2023), Bertin, El Kolei and
Klutchnikoff (2019), Liu and Wu (2019), Rebelles (2015), Varet et al. (2023).

2.2. Adaptive estimation

As mentioned at the beginning of Section 2, we are interested in the pointwise adaptive estimation, in
a minimax framework, of the density function 𝑓 over the collection of Hölder-type functional classes
Σ(𝑠, 𝐿), where the nuisance parameter (𝑠, 𝐿) is assumed to belong to K = (0,∞)2. Since the results of
Lepskii (1991), it is well-known that, in this context, it is impossible to construct a single estimation
procedure 𝑓★𝑛 which attains the minimax rate of convergence

𝑁𝑛 (𝑠, 𝐿) = inf
𝑓𝑛

sup
𝑓 ∈Σ (𝑠,𝐿)

𝑅𝑛 ( 𝑓𝑛, 𝑓 ) (2.2)
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simultaneously for all functional classes, i.e., which satisfies

sup
𝑓 ∈Σ (𝑠,𝐿)

𝑅𝑛 ( 𝑓★𝑛 , 𝑓 ) . 𝑁𝑛 (𝑠, 𝐿), for all (𝑠, 𝐿) ∈ K . (2.3)

In (2.2), the infimum is taken over all possible estimators 𝑓𝑛 of 𝑓 , while the general notation 𝑢𝑛 . 𝑣𝑛
used in (2.3) means that 𝑢𝑛, 𝑣𝑛 ≥ 0 and lim sup𝑛→∞ 𝑢𝑛/𝑣𝑛 <∞.

It is therefore necessary to define a specific notion of adaptive rate of convergence (ARC) before try-
ing to construct an optimal estimation procedure. Several definitions were proposed in the last decades,
see, e.g., Lepskii (1991), Tsybakov (1998), Klutchnikoff (2014) and Rebelles (2015). In this paper we
adopt the definition of Klutchnikoff (2014), which coincides in our framework with the refined version
introduced by Rebelles (2015). In order to be self-contained, we recall the definition of admissibility
of a collection of normalizations and the notion of ARC employed in these two papers. It is always
assumed that collections such as 𝜙 = {𝜙𝑛 (𝑠, 𝐿) : (𝑠, 𝐿) ∈ K, 𝑛 ∈ N} have nonnegative components, i.e.,
𝜙𝑛 (𝑠, 𝐿) ≥ 0 for all (𝑠, 𝐿) ∈ K and all 𝑛 ∈ N.

Definition 3. A collection 𝜙 = {𝜙𝑛 (𝑠, 𝐿) : (𝑠, 𝐿) ∈ K, 𝑛 ∈ N} is said to be admissible if there exists an
estimator 𝑓𝑛 such that

sup
𝑓 ∈Σ (𝑠,𝐿)

𝑅𝑛 ( 𝑓𝑛, 𝑓 ) . 𝜙𝑛 (𝑠, 𝐿), for all (𝑠, 𝐿) ∈ K .

Given two collections 𝜙 = {𝜙𝑛 (𝑠, 𝐿) : (𝑠, 𝐿) ∈ K, 𝑛 ∈ N} and 𝜓 = {𝜓𝑛 (𝑠, 𝐿) : (𝑠, 𝐿) ∈ K, 𝑛 ∈ N}, we
define two subsets of K, namely

[𝜓� 𝜙] =
{
(𝑠, 𝐿) ∈ K : lim

𝑛→∞
𝜓𝑛 (𝑠, 𝐿)
𝜙𝑛 (𝑠, 𝐿)

= 0
}
,

and

[𝜓≫ 𝜙] =
{
(𝑠, 𝐿) ∈ K : lim sup

𝑛→∞

𝜓𝑛 (𝑠, 𝐿)
𝜙𝑛 (𝑠, 𝐿)

× 𝜓𝑛 (𝑠′, 𝐿′)
𝜙𝑛 (𝑠′, 𝐿′)

=∞, ∀(𝑠′, 𝐿′) ∈ [𝜓� 𝜙]
}
.

Equipped with these notations, the notion of ARC is defined as follows.

Definition 4. An admissible collection 𝜙 = {𝜙𝑛 (𝑠, 𝐿) : (𝑠, 𝐿) ∈ K, 𝑛 ∈ N} is called an ARC if for any
other admissible collection 𝜓 = {𝜓𝑛 (𝑠, 𝐿) : (𝑠, 𝐿) ∈ K, 𝑛 ∈ N}, we have

• [𝜓� 𝜙] is contained in a (dim(K) − 1)–dimensional manifold.
• [𝜓≫ 𝜙] contains an open subset of K.

Remark 5. In our context, where K = (0,∞)2, we can grasp the essence of Definition 4 heuristically
as follows: Given an admissible collection 𝜙, the set [𝜓 � 𝜙] comprises collections 𝜓 exhibiting a
superior rate of convergence compared to 𝜙. On the other hand, [𝜓≫ 𝜙] encapsulates collections that
suffer from a worse rate of convergence than all the multiplicative inverse gaps observed in [𝜓 � 𝜙].
Consequently, Definition 4 designates 𝜙 as an ARC if [𝜓 � 𝜙], akin to an optimal frontier, manifests
as 1-dimensional. This implies that for a given 𝑠, the convergence rate of 𝜙𝑛 (𝑠, 𝐿) cannot be enhanced.
Conversely, the condition that [𝜓≫ 𝜙] contains an open subset of (0,∞)2 suggests ample space for
collections exhibiting sub-optimal convergence rates in comparison to 𝜙. To illustrate visually, envision
𝑠 along the 𝑥-axis and 𝐿 along the 𝑦-axis. It is shown in Theorem 4.5 that on simple domains, if 𝜙 is
an ARC, then the set [𝜓 � 𝜙] is equal to the vertical line {𝑠0} × (0,∞) for an appropriate 𝑠0 > 0, and
[𝜓≫ 𝜙] corresponds to the half-space (𝑠0,∞) × (0,∞).
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Let us recall that the ARC is unique up to asymptotic order, i.e., if 𝜙 and 𝜓 are two ARCs then, for
any (𝑠, 𝐿) ∈ K, we have

𝜙𝑛 (𝑠, 𝐿) . 𝜓𝑛 (𝑠, 𝐿) and 𝜓𝑛 (𝑠, 𝐿) . 𝜙𝑛 (𝑠, 𝐿).

Henceforth, we refer to an ARC as the ARC using the above identification. Further, note that if the
collection of minimax rates 𝑁 = {𝑁𝑛 (𝑠, 𝐿) : (𝑠, 𝐿) ∈ K, 𝑛 ∈ N} is admissible, then it is the ARC.

3. Statistical procedure

In this section, we present a novel estimation procedure which is both simple to understand and com-
pletely free of any tuning parameters, thus eliminating the need for a sophisticated calibration step. The
main idea behind our approach is to use polynomials of varying degrees to approximate the density
function 𝑓 in different neighborhoods of 𝑡 and then to simultaneously select the optimal neighborhood
and degree of approximation in a data-driven manner. Let us formalize this idea.

3.1. Local polynomial estimators

Our collection of local polynomial estimators will be indexed by a two-dimensional parameter

𝛾 = (𝑚, ℎ) ∈ Γ =N0 × (0, 𝜌],

where 𝑚 represents the degree of the polynomial and ℎ denotes the bandwidth, the latter of which
determines the size of the neighborhoods. Let 1𝐴 be the indicator function for any set 𝐴 ⊆ R𝑑 . Recall
that Δ = [−1,1]𝑑 , and consider the kernel function

𝐾 (𝑢) = 1Δ (𝑢), 𝑢 ∈ R𝑑 . (3.1)

Note that the kernel 𝐾 does not have to be a density function. While other positive kernels could be
used, we limit our study to this particular kernel for the sake of simplicity. Let us define the polynomial
𝑝𝛾 as the solution to the following continuous kernel-weighted least-squares minimization problem:

𝑝𝛾 = arg min
𝑝∈P𝑚

∫
V(ℎ)

{ 𝑓 (𝑡 + 𝑢) − 𝑝(𝑢)}2 𝑤ℎ (𝑢)d𝑢,

where

𝑤ℎ (𝑢) = ℎ−𝑑𝐾 (ℎ−1𝑢)1D (𝑡 + 𝑢). (3.2)

Notice that the support of 𝑤ℎ corresponds to the neighborhood V(ℎ). If we consider the weighted
space 𝐿2 (𝑤ℎ) endowed with its natural inner product

〈𝑔, 𝑔̃〉 =
∫
R𝑑

𝑔(𝑥)𝑔̃(𝑥)𝑤ℎ (𝑥)d𝑥,

then the polynomial 𝑝𝛾 can be interpreted as the orthogonal projection of the function 𝑓 (𝑡 + ·) onto
the polynomial space P𝑚 ⊆ 𝐿2 (𝑤ℎ). A simple combinatorial argument shows that the dimension 𝐷𝑚

of P𝑚 is the number of 𝑑-combinations from a set of 𝑚 + 𝑑 elements. For 𝛾 = (𝑚, ℎ) ∈ Γ, consider the
collection of rescaled monomials

Φ𝛾 (𝑢) =
{
𝜑𝛼

(𝑢
ℎ

)}
|𝛼 | ≤𝑚
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which we organize into a 𝐷𝑚 × 1 vector using the total order defined for 𝛼 ≠ 𝛼̃ by 𝛼 ≺ 𝛼̃ if and only if
|𝛼 | < |𝛼̃ |, or |𝛼 | = |𝛼̃ | and 𝛼𝑖★ < 𝛼̃𝑖★ for 𝑖★ = min(𝑖 ∈ {1, . . . , 𝑑} : 𝛼𝑖 ≠ 𝛼̃𝑖). Now that Φ𝛾 (𝑢) is a vector
function, define the 𝐷𝑚 × 𝐷𝑚 Gram matrix

B𝛾 =

∫
R𝑑

Φ𝛾 (𝑢)Φ>
𝛾 (𝑢)𝑤ℎ (𝑢)d𝑢. (3.3)

By virtue of Lemma A.1 in Appendix A, the Gram matrix B𝛾 is symmetric positive definite, so its
smallest eigenvalue

𝜆𝛾 = min
𝑣>𝑣=1

𝑣>B𝛾𝑣 (3.4)

must be positive. Letting B1/2
𝛾 be the lower triangular matrix in the Cholesky decomposition of B𝛾

leads to the following orthonormal basis for the 𝐿2 (𝑤ℎ) space:

𝐻𝛾 (𝑢) = B−1/2
𝛾 Φ𝛾 (𝑢), 𝑢 ∈ R𝑑 . (3.5)

If 𝑎𝛾 denotes the 𝐷𝑚 × 1 coordinate vector of 𝑝𝛾 in this orthonormal basis, then

𝑎𝛾 = 〈 𝑓 (𝑡 + ·), 𝐻𝛾〉 = E
{
𝐻𝛾 (𝑋 − 𝑡)𝑤ℎ (𝑋 − 𝑡)

}
≈ 1
𝑛

𝑛∑︁
𝑖=1

𝐻𝛾 (𝑋𝑖 − 𝑡)𝑤ℎ (𝑋𝑖 − 𝑡) =: 𝑎̂𝛾 .

This leads to 𝑝𝛾 (𝑢) = 𝐻>
𝛾 (𝑢)𝑎̂𝛾 being an estimator for 𝑝𝛾 . Therefore, for any 𝛾 = (𝑚, ℎ) ∈ Γ, we define

our local polynomial estimator as follows:

𝑓𝛾 (𝑡) = 𝑝𝛾 (0) =
1
𝑛

𝑛∑︁
𝑖=1

𝐻>
𝛾 (0)𝐻𝛾 (𝑋𝑖 − 𝑡)𝑤ℎ (𝑋𝑖 − 𝑡). (3.6)

3.2. Selection procedure

The data-driven procedure selects a local polynomial estimator from a collection { 𝑓𝛾 (𝑡) : 𝛾 ∈ Γ𝑛},
where Γ𝑛 is a discrete one-parameter subset of the pairs of polynomial degrees and bandwidths in Γ,
see (3.8) below. For any ℓ ∈ N, set

ℎℓ = 𝜌 exp(−ℓ), (3.7)

and let {𝑚ℓ : ℓ ∈ N} ⊆ {0,1, . . . , blog𝑛c} be a nonincreasing sequence of integers. These choices put
approximately log𝑛 bandwidth levels on a logarithmic scale down to a smallest neighborhood of radius
at least 𝜌𝑛−1 asymptotically. Consider the set of indexed pairs

Γ𝑛 = {(𝑚ℓ , ℎℓ ) : ℓ ∈ L𝑛} ⊆ Γ, (3.8)

where

L𝑛 =
{
1 ≤ ℓ ≤ blog𝑛c : 𝑛ℎ𝑑

ℓ
𝑊ℎℓ ≥ (log𝑛)3} with 𝑊ℎ =

∫
R𝑑

𝑤ℎ (𝑢)d𝑢. (3.9)

To provide clarity for the selection process, we introduce certain observables. Specifically, for each
𝛾 = (𝑚, ℎ) ∈ Γ𝑛, the quantity

𝑣̂𝛾 =
1
𝑛
× 1
𝑛

𝑛∑︁
𝑖=1

{
𝐻>
𝛾 (0)𝐻𝛾 (𝑋𝑖 − 𝑡)𝑤ℎ (𝑋𝑖 − 𝑡)

}2 (3.10)



10

is an estimator of a natural upper bound on the variance of 𝑓𝛾 (𝑡). Also, for some fixed constant 𝛿 > 1,
and the pairs 𝛾 = (𝑚, ℎ) ∈ Γ𝑛 and (𝑣, 𝑥) ∈ [0,∞)2, define

𝑐𝛾 =

√
𝐷𝑚

𝑛ℎ𝑑𝜆𝛾
, 𝜀𝛾 =

(𝛿 − 1)𝐷𝑚𝑊ℎ

𝑛ℎ𝑑𝜆2
𝛾

, Λ𝛾 = 2 |log(𝜆𝛾) |, (3.11)

and

𝑟𝛾 (𝑣, 𝑥) =
√

2𝑣𝑥 + 𝑐𝛾𝑥, pen(𝛾) = 𝑑𝛿 |log ℎ| +Λ𝛾 . (3.12)

Equipped with these notations, consider an upper bound estimator of the bias of 𝑓𝛾 (𝑡), i.e.,

𝐴̂𝛾 = max
𝛾′∈Γ𝑛

{�� 𝑓𝛾∨𝛾′ (𝑡) − 𝑓𝛾′ (𝑡)
�� − Û𝛾∨𝛾′ − Û𝛾′

}
+ , (3.13)

where (·)+ = max{· ,0} and 𝛾 ∨ 𝛾′ denotes the maximum of 𝛾 = (𝑚ℓ , ℎℓ ) and 𝛾′ = (𝑚ℓ′ , ℎℓ′ ) with
respect to the total order � defined on Γ𝑛 by 𝛾 � 𝛾′ if ℎℓ ≤ ℎℓ′ (i.e., if ℓ ≥ ℓ′). Moreover, consider a
penalized version of the estimator of an upper bound on the standard deviation estimator of 𝑓𝛾 (𝑡),

Û𝛾 = 𝑟𝛾
{
𝑣̂𝛾 + 𝜀𝛾 ,pen(𝛾)

}
. (3.14)

The final adaptive estimator is then defined by

𝑓 (𝑡) = 𝑓𝛾̂ (𝑡), where 𝛾̂ = arg min
𝛾∈Γ𝑛

(
𝐴̂𝛾 + Û𝛾

)
. (3.15)

Remark 6. Before we state our main results in Section 4, it is worthwhile to first discuss a few points
that are particularly relevant:

1. The selection rule (3.15) is inspired by the so-called Goldenshluger-Lepski method introduced in
a series of papers, see Lepskii (1991) and Goldenshluger and Lepski (2008, 2009, 2011, 2014).
It consists of a trade-off between the bias upper bound estimators 𝐴̂𝛾 and the penalized standard
deviation upper bound estimators Û𝛾 . Finding tight upper variables Û𝛾 is the key point of this
selection procedure. Ideally, we would like to choose

U𝛾 = 𝑟𝛾{𝑣𝛾 ,pen(𝛾)}, (3.16)

where the counterpart of 𝑣̂𝛾 in (3.10), namely

𝑣𝛾 =
1
𝑛
× E

[{
𝐻>
𝛾 (0)𝐻𝛾 (𝑋 − 𝑡)𝑤ℎ (𝑋 − 𝑡)

}2
]
, (3.17)

is a natural upper bound on the true variance of 𝑓𝛾 (𝑡).
2. The form of U𝛾 can be easily explained. The function 𝑟𝛾 in (3.12) is used to apply a Bernstein

inequality to control the bias term 𝐴̂𝛾 , see Lemma A.4 and its proof for details in Appendix A.
The penalty pen(𝛾) consists of two terms: the |log ℎ|-term is unavoidable in pointwise adaptive
estimation (see Lepskii (1991)) while the quantity Λ𝛾 , which adapts to the geometry of the domain
D, is specific to our framework. To define Û𝛾 , the variance bound 𝑣𝛾 is replaced by its estimator
𝑣̂𝛾 and the correction term 𝜀𝛾 is added to ensure that, with large probability, Û𝛾 becomes larger
than U𝛾 while staying close to it.

3. The Goldenshluger-Lepski method is generally defined using an order on Γ𝑛 which is, roughly
speaking, induced by the variance of the estimators 𝑓𝛾 (𝑡). This explains the definition of the total
order 𝛾 � 𝛾′ stated just below (3.13), which involves only the bandwidth ℎ in the comparison of
the parameter pairs (𝑚, ℎ) in Γ𝑛.
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4. Main results

Our main results are presented in three steps. First, in Section 4.1, we obtain bounds on the bias and
variance of the base local polynomial estimators 𝑓𝛾 (𝑡) defined in (3.6), and we formulate an oracle-
type inequality satisfied by the adaptive estimator 𝑓 (𝑡) defined in (3.15). Next, in Section 4.2, we focus
on the most common case, where the geometry of D is ‘simple’ in a neighborhood of 𝑡, meaning
that Assumption 1 is satisfied. In this situation, the minimax and adaptive rates of convergence are
established over the whole collection of Hölder-type functional classes {Σ(𝑠, 𝐿) : (𝑠, 𝐿) ∈ (0,∞)2}. In
Section 4.3, we consider a specific situation where the domain D has a more complicated geometry. To
aid understanding, the results are specifically stated for polynomial sectors. We obtain upper bounds on
the rate of convergence in each class Σ(𝑠, 𝐿), which depend on the geometry of D, and we prove that,
for small regularities 𝑠, these rates of convergence are minimax. Analogous adaptivity results are also
derived. Finally, in Section 4.4, the case of unknown compact convex domains is briefly discussed.

4.1. General results

Our first two results pertain to the study of the bias and variance of each estimator in the collection
{ 𝑓𝛾 (𝑡) : 𝛾 ∈ Γ}. The proofs of these propositions are postponed to Appendix B.

Proposition 4.1 (Bound on the bias). Let 𝛾 = (𝑚, ℎ) ∈ Γ be given. Assume that the density function
𝑓 : D → R belongs to the class Σ(𝑠, 𝐿) for some positive 𝑠 and 𝐿. Then, there exists a positive real
constant 𝔏𝑚,𝑠,𝐿 that depends on 𝑚, 𝑠 and 𝐿 such that��E {

𝑓𝛾 (𝑡)
}
− 𝑓 (𝑡)

�� ≤ 𝑊ℎ

√
𝐷𝑚

𝜆𝛾
×𝔏𝑚,𝑠,𝐿 ℎ

𝛽𝑚 (𝑠) , (4.1)

where 𝛽𝑚 (𝑠) = min(𝑚 + 1, 𝑠). Moreover, we have 𝔏𝑚,𝑠,𝐿 = 𝐿 as soon as 𝑚 ≥ T𝑠U.

Proposition 4.2 (Bound on the variance). Let 𝛾 = (𝑚, ℎ) ∈ Γ be given. Assume that the density func-
tion 𝑓 : D → R satisfies

‖ 𝑓 ‖V(𝜌) := sup
𝑢∈V(𝜌)

| 𝑓 (𝑡 + 𝑢) | <∞. (4.2)

Also, recall the definition of 𝑣𝛾 from (3.17). Then, we have

Var
{
𝑓𝛾 (𝑡)

}
≤ 𝑣𝛾 ≤ 𝑣★𝛾 , with 𝑣★𝛾 =

(
𝑊ℎ

√
𝐷𝑚

𝜆𝛾

)2

×
‖ 𝑓 ‖V(𝜌)

𝑛ℎ𝑑𝑊ℎ

. (4.3)

Let us highlight that both the bias bound (4.1) and the variance bound (4.3) can be broken down
into two separate factors. The second factors, which are proportional to ℎ𝛽𝑚 (𝑠) and 1/(𝑛ℎ𝑑𝑊ℎ), can be
readily explained as they correspond (up to a constant) to the bias and variance bounds of multivariate
histograms with adaptive bin shapes. These histograms are defined as 𝑝B =

∑𝑛
𝑖=1 1B (𝑋𝑖)/{𝑛Leb(B)}

on each multivariate bin B belonging to a partition of D, as documented for example by Klemelä
(2009). Specifically, when considering the bin B = D ∩ (𝑡 + ℎΔ), it is straightforward to show that
the bias and the variance are proportional to ℎ𝛽𝑚 (𝑠) and 1/(𝑛ℎ𝑑𝑊ℎ), respectively, just as we would
with our estimator when the polynomial degree is set to 𝑚 = 0. Notice however that in general the first
factors introduce an additional quantity, the ratio 𝑊ℎ/𝜆𝛾 , which is not usually present and depends on
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the geometry of the domain D. In the case of simple domains, which are treated in Section 4.2, the ratio
𝑊ℎ/𝜆𝛾 remains asymptotically bounded, thereby exerting no influence on the bias/variance analysis.

In the case of complicated domains, which are treated in Section 4.3, we know that the ratio𝑊ℎ/𝜆𝛾
encodes the complexity of the domain in some way. Unfortunately, we do not have a heuristic interpre-
tation that would let us guess its asymptotic behavior in the variable 𝑛 (or ℎ) in general. This remains an
open problem. However, in the specific case of the polynomial sectors D𝑘 covered in Section 4.3, we
do have a (potential) interpretation based on the calculations in Equations (B.25), (B.26) and (B.27) of
Appendix B. Indeed, the quantity𝑊ℎ is the area of the domain at the scale of the bandwidth parameter,
so the specific result𝑊ℎ = ℎ

𝑘−1/(𝑘 +1) in (B.25) gives a ‘unit’ of the pointiness of the polynomial sec-
tors. Equations (B.26) and (B.27) then show that each degree of a polynomial in our basis can capture
one such unit. Since there are two dimensions and the polynomials in our space have degree at most
𝑚 (recall that 𝛾 = (𝑚, ℎ)), we are left with 𝑊ℎ/𝜆𝛾𝑘 being asymptotic to ℎ−(𝑘−1)×2𝑚, where 𝛾𝑘 ≡ 𝛾 is
the notation tailored to the polynomial sector D𝑘 . One could therefore interpret ℎ (𝑘−1)×2𝑚 as the finest
amount of pointiness that our polynomial basis can model. The finer the pointiness of the domain, the
bigger the bias and variance become in Propositions 4.1 and 4.2.

For the forthcoming minimax and adaptive results in Sections 4.2 and 4.3, it is also worth noting
that Lemma A.3 in Appendix A implies that ‖ 𝑓 ‖V(𝜌) remains uniformly bounded over 𝑓 ∈ Σ(𝑠, 𝐿) in
the variance bound (4.3).

The main result of this section is an oracle-type inequality which provides an explicit asymptotic
bound for the pointwise 𝐿2 risk of our adaptive estimator 𝑓 (𝑡).

Theorem 4.3 (Oracle-type inequality). Assume that the density function 𝑓 : D → R satisfies (4.2).
Assume further that the domain D satisfies the following property: there exists a positive real constant
𝑏 ∈ (0,∞) such that

min
𝛾=(𝑚,ℎ) ∈Γ𝑛

(ℎ𝑚)−𝑏𝜆𝛾 ≥ 1. (4.4)

Define, for any 𝛾 ∈ Γ𝑛,

B𝛾 = max
𝛾′∈Γ𝑛
𝛾′�𝛾

��E {
𝑓𝛾′ (𝑡)

}
− 𝑓 (𝑡)

�� , and U★
𝛾 = 𝑟𝛾{𝑣★𝛾 ,pen(𝛾)}, (4.5)

where recall 𝑣★𝛾 is the bound on the variance in (4.3), and the quantities 𝑟𝛾 (·, ·) and pen(·) are defined
in (3.12). Recall also that 𝛿 > 1 is a parameter that we fixed above (3.12). Then, we have

𝑅𝑛 ( 𝑓 , 𝑓 ) ≤ min
𝛾∈Γ𝑛

[
5B𝛾 +

{
3 + 2

√︃
(𝛿 − 1)/‖ 𝑓 ‖V(𝜌)

}
U★
𝛾

]
+ O

{√︂
(log𝑛)𝑑

𝑛

}
. (4.6)

The notation 𝑢𝑛 = O(𝑣𝑛) here means that lim sup𝑛→∞ |𝑢𝑛/𝑣𝑛 | <∞.

Remark 7. On domains with simple geometries, which are characterized by Assumption 1 below, the
technical condition (4.4) in Theorem 4.3 is automatically satisfied when 𝑚 is constrained to a finite
set of values, a situation often encountered in practical scenarios where the target density has a finite
smoothness parameter 𝑠. This assertion is demonstrated in Lemma A.2 in Appendix A; see also the first
paragraph in the proof of Theorem 4.5. However, on domains with complicated geometries, verifying
the technical condition (4.4) becomes a case-by-case endeavor. For instance, in the polynomial sector
example detailed in Section 4.3, explicit verification is provided within the proof of Theorem 4.7 to
establish the adaptivity of our estimator.
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4.2. Domains with simple geometries

Below, we introduce an assumption that qualifies what it means for a domain D to be geometrically
‘simple’ in a neighborhood of 𝑡.

Assumption 1. There exists an open subset Δ0 ⊆ Δ ≡ [−1,1]𝑑 such that

ℎΔ0 ⊆ V(ℎ), for all ℎ ∈ (0, 𝜌] .

This assumption is satisfied for example if V(ℎ) is star-shaped with respect to the origin and has
a non-empty interior. Assumption 1 is a relaxation of Assumption 5 in Section 2.2 of Bertin et al.
(2020), which stipulates that there exists a finite set of linear transformations of determinant 1 such
that for a hypercube [0, 𝑟]𝑑 of a small enough width 𝑟 , you can, for any point 𝑡 ∈ D, choose a linear
transformation in the finite set so that the linearly transformed hypercube (i.e., a rotated parallelotope)
fits into D − 𝑡. Assumption 1 above is weaker because we could simply take Δ0 to be a small enough
open cone contained in the rotated parallelotope that fits into D − 𝑡.

Under Assumption 1, Proposition 4.4 below establishes that our local polynomial estimator 𝑓𝛾 (𝑡)
achieves the minimax rate of convergence over each individual class Σ(𝑠, 𝐿). Similarly, Theorem 4.5
proves that our adaptive statistical procedure 𝑓 (𝑡) attains the ARC over the whole collection {Σ(𝑠, 𝐿) :
(𝑠, 𝐿) ∈ (0,∞)2}. The ARC here corresponds to the minimax rate of convergence up to a logarithmic
factor.

Proposition 4.4 (Minimaxity of 𝑓𝛾 (𝑡) on simple domains). Suppose that Assumption 1 holds. Let
(𝑠, 𝐿) ∈ (0,∞)2 be given. Let 𝛾 = (𝑚, ℎ) ∈ Γ be such that

𝑚 = T𝑠U and ℎ =


1

2𝑠𝔏2
T𝑠U,𝑠,𝐿

×
𝑑𝔉𝑠,𝐿

2𝑑 𝑛


1/(2𝑠+𝑑)

, (4.7)

where 𝔏𝑚,𝑠,𝐿 is a positive real constant that appears in the bias upper bound in Proposition 4.1, and
𝔉𝑠,𝐿 is any upper bound on sup 𝑓 ∈Σ (𝑠,𝐿) ‖ 𝑓 ‖V(𝜌) (the existence of which is guaranteed by Lemma A.3
in Appendix A). If we set

𝑁𝑛 (𝑠, 𝐿) = 𝑛−𝑠/(2𝑠+𝑑) , (4.8)

then the following assertions hold:

1. {𝑁𝑛 (𝑠, 𝐿) : 𝑛 ∈ N} is the minimax rate of convergence over Σ(𝑠, 𝐿).
2. The estimator 𝑓𝛾 (𝑡) attains this rate of convergence. More precisely, for 𝑛 large enough, we have

𝑁−1
𝑛 (𝑠, 𝐿) sup

𝑓 ∈Σ (𝑠,𝐿)
𝑅𝑛 ( 𝑓𝛾 , 𝑓 ) ≤ 𝐶 (𝑠, 𝐿),

where the right-hand is defined by the positive real constant

𝐶 (𝑠, 𝐿) = 2𝑑
√
𝐷𝑚

𝜆★(𝑚)

√︄(
𝑑

2𝑠
+ 1

) (
2𝑠

4𝑠𝑑

)𝑑/(2𝑠+𝑑)
𝔉
𝑠/(2𝑠+𝑑)
𝑠,𝐿

(𝔏T𝑠U,𝑠,𝐿)𝑑/(2𝑠+𝑑) (4.9)

and 𝜆★(𝑚) > 0 is a lower bound found in Lemma A.2 in Appendix A on the smallest eigenvalue
𝜆𝛾 of the Gram matrix B𝛾 .
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Remark 8. Understanding the optimal parameters in (4.7) unfolds as follows. On simple domains,
which are characterized by Assumption 1, it turns out that for a finite 𝑚, the ratios 𝑊ℎ/𝜆𝛾 in Propo-
sition 4.1 and 4.2 remain uniformly bounded in the variable ℎ. Therefore, the bound on the bias (4.1)
depends on the smoothness parameter 𝑚 asymptotically only through the factor ℎ𝛽𝑚 (𝑠) , since 𝐷𝑚 and
𝔏𝑚,𝑠,𝐿 are constants for a finite 𝑚. By the same argument, the bound on the variance (4.3) is not
affected asymptotically by the choice of 𝑚. Therefore, given the decomposition of the squared risk
measure as the sum between the squared bias and the variance of the estimator, recall Remark 2, it
becomes clear that the optimal choice of 𝑚 in this case will minimize ℎ𝛽𝑚 (𝑠) ≡ ℎmin(𝑚+1,𝑠) , which
happens when 𝑚 ≥ T𝑠U. Since the rate ℎ𝛽𝑚 (𝑠) does not improve for larger 𝑚 ≥ T𝑠U and 𝐷𝑚 increases
with 𝑚, the optimal choice of 𝑚 for our pointwise 𝐿2 risk measure is necessarily the smallest 𝑚 that
satisfies 𝑚 ≥ T𝑠U, namely 𝑚 = T𝑠U. Once the optimal 𝑚 = T𝑠U is selected, the optimization of the
bandwidth ℎ is analogous to the approach employed for classical kernel density estimators.

Heuristically, our local polynomial estimator wants to adapt its smoothness level𝑚 to the smoothness
level 𝑠 of the target density. The information of the target density is utilized optimally when 𝑚 is the
largest integer which is smaller than 𝑠 and leaves room for a positive Hölder exponent in Definition 2.
That value is necessarily 𝑚 = T𝑠U. In particular, if the practitioner decides to fix a suboptimal value,
say 𝑚 = 0 when 𝑠 > 1, and then optimize over ℎ, the bias term in Proposition 4.1 will simply not have
the smallest rate of convergence possible.

On complicated domains, the optimization in ℎ is more subtle since the ratio𝑊ℎ/𝜆𝛾 has to be taken
into account, which requires a case-by-case analysis; see, e.g., Proposition 4.6 and its proof.

In Section 3.2, we have constructed several statistical procedures depending on the choice of the
discrete collection of polynomial degrees {𝑚ℓ : ℓ ∈ N}. For the next result, we fix this collection by
choosing

𝑚ℓ =

⌊
log𝑛
2ℓ

⌋
, ℓ ∈ N. (4.10)

Theorem 4.5 (Adaptivity of 𝑓 (𝑡) on simple domains). Suppose that Assumption 1 holds. Let K =

(0,∞)2 and consider the set of Hölder-type functional classes {Σ(𝑠, 𝐿) : (𝑠, 𝐿) ∈ K}. The following
assertions hold:

1. The ARC is the admissible collection 𝜙 given by

𝜙𝑛 (𝑠, 𝐿) =
(

log𝑛
𝑛

)𝑠/(2𝑠+𝑑)
, (𝑠, 𝐿) ∈ K, 𝑛 ∈ N. (4.11)

More precisely, if 𝜓 is another admissible collection of normalizations such that (𝑠0, 𝐿0) belongs
to [𝜓� 𝜙], then

[𝜓� 𝜙] ⊆ {𝑠0} × (0,∞) and [𝜓≫ 𝜙] ⊇ (𝑠0,∞) × (0,∞).

2. The adaptive estimator 𝑓 (𝑡) is such that, for any (𝑠, 𝐿) ∈ K,

lim sup
𝑛→∞

sup
𝑓 ∈Σ (𝑠,𝐿)

𝜙−1
𝑛 (𝑠, 𝐿)𝑅𝑛 ( 𝑓 , 𝑓 )

≤ 𝐶
[
4 +

{
(𝛿 − 1)/‖ 𝑓 ‖V(𝜌)

}1/2
]
𝑒𝑠

2𝑑
√︁
𝐷★(𝑠, 𝑑)

𝜆• (𝑠, 𝑑)
√
𝑑 𝛿 𝔉

𝑠/(2𝑠+𝑑)
𝑠,𝐿

(𝔏★
𝑠,𝐿)

𝑑/(2𝑠+𝑑) ,
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where 𝐶 > 0 is a universal constant (independent of all parameters), 𝛿 > 1 is a parameter that we
fixed above (3.12), 𝔉𝑠,𝐿 is any upper bound on sup 𝑓 ∈Σ (𝑠,𝐿) ‖ 𝑓 ‖V(𝜌) (the existence of which is
guaranteed by Lemma A.3 in Appendix A), and

𝐷★(𝑠, 𝑑) = max
0≤𝑚′≤b2𝑠+𝑑c

𝐷𝑚′ (recall that 𝐷𝑚′ =

(
𝑚′ + 𝑑
𝑑

)
)

𝜆• (𝑠, 𝑑) = min
0≤𝑚′≤b2𝑠+𝑑c

𝜆★(𝑚) > 0,

𝔏★
𝑠,𝐿 = max

0≤𝑚′≤b2𝑠+𝑑c
𝔏𝑚′ ,𝑠,𝐿 .

Note that the positivity of 𝜆• (𝑠, 𝑑) is guaranteed by Lemma A.2 in Appendix A.

4.3. Domains with complicated geometries

Set 𝜌 = 1 and define the following polynomial sectors in R2:

D𝑘 =
{
(𝑥, 𝑦) ∈ R2 : 0 ≤ 𝑥 ≤ 1,0 ≤ 𝑦 ≤ 𝑥𝑘

}
, 𝑘 > 1. (4.12)

This section is dedicated to the local estimation, at the origin 𝑡 = (0,0), of density functions supported
on a given polynomial sector domain D𝑘 . In particular, we obtain minimaxity and adaptivity results
similar to those in Section 4.2 but on the complicated domain D𝑘 , see Proposition 4.6 and Theorem 4.7,
respectively.

Item 2 of Remark 9 below explains how our results could be extended to other complicated domains
without much difficulty. We believe that treating these polynomial sector examples separately eluci-
dates the overall arguments and techniques and thus provides greater clarity for the reader. Furthermore,
our statements here complement the simulations presented in Section 5, which are also performed on
polynomial sectors.

Proposition 4.6 (Minimaxity of 𝑓𝛾 (𝑡) on D𝑘). Let (𝑠, 𝐿) ∈ (0,∞)2 be given. Define

𝑠𝑘 = arg max
𝛽∈ (0,𝑠]

𝜃𝑘 (𝛽), where 𝜃𝑘 (𝛽) =
𝛽 − 2T𝛽U(𝑘 − 1)

2𝛽 + 𝑘 + 1
. (4.13)

The following assertions hold:

1. There exists a positive real constant 𝐶 (𝑠, 𝐿, 𝑘) such that, for any 𝑓 ∈ Σ(𝑠, 𝐿), we have

𝑅𝑛 ( 𝑓𝛾𝑘 , 𝑓 ) ≤ 𝐶 (𝑠, 𝐿, 𝑘)𝑛−𝜃𝑘 (𝑠𝑘 ) , (4.14)

where 𝛾𝑘 = (𝑚, ℎ) with 𝑚 = T𝑠𝑘U and ℎ = 𝑛−1/(2𝑠𝑘+𝑘+1) .
2. Assume further that 𝑠 ∈ (0,1], then there exists a positive real constant 𝑐(𝑠, 𝐿, 𝑘) such that

inf
𝑓

sup
𝑓 ∈Σ (𝑠,𝐿)

𝑅𝑛 ( 𝑓 , 𝑓 ) ≥ 𝑐(𝑠, 𝐿, 𝑘)𝑛−𝜃𝑘 (𝑠) . (4.15)

In particular, {𝑛−𝑠/(2𝑠+𝑘+1) : 𝑛 ∈ N} is the minimax rate of convergence on Σ(𝑠, 𝐿) as soon as
𝑠 ∈ (0,1]; refer to Item 1 of Remark 9 below.
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Remark 9. Let us make two comments:

1. Through the upper bound (4.14), Proposition 4.6 shows that the estimator is consistent as soon as
𝜃𝑘 (𝑠𝑘) > 0. This is always the case since, for any 𝛽 ∈ (0,min(𝑠,1)], we have 𝜃𝑘 (𝛽) = 𝛽/(2𝛽 +
𝑘 + 1) > 0. Using similar arguments, it is easily seen that for any 𝑠 ∈ (0,1] and any 𝑘 > 1, we
have 𝑠𝑘 = 𝑠. However, for 𝑘 > 2 and 𝑠 > 1, we always have 𝑠 − 2T𝑠U(𝑘 − 1) < 0, which implies
𝑠𝑘 = 1 < 𝑠. Moreover, note that, for any 𝑠 > 0 and any 𝑘 > 1, we have

𝜃𝑘 (𝑠𝑘) <
𝑠

2𝑠 + 2
.

Thus, the rate of convergence established in Proposition 4.6 is smaller compared with the one
established for simple domains in Proposition 4.4. The estimation problem considered in the
present section is more difficult because of the local pinch of D𝑘 near the origin.

2. Results analogous to those of Proposition 4.6 can be obtained for other domains D with compli-
cated geometries. In particular, for 𝛼, 𝛽 ∈ N𝑑

0 and ℎ > 0, define

𝐼D (𝛼, 𝛽, ℎ) =
∫
R𝑑

𝜑𝛼

(𝑢
ℎ

)
𝜑𝛽

(𝑢
ℎ

)
𝑤ℎ (𝑢)d𝑢.

Assume that there exist a function 𝑎 : N𝑑
0 → (0,∞) and an increasing function 𝐺 : N𝑑

0 → (0,∞)
such that

𝐼D (𝛼, 𝛽, ℎ) = 𝑎(𝛼 + 𝛽)ℎ𝐺 (𝛼+𝛽) , for any 𝛼, 𝛽 ∈ N𝑑
0 .

Now define

𝑠D = arg max
𝛽∈ (0,𝑠]

𝜃D (𝛽), where 𝜃D (𝛽) = 𝛽 +𝐺 (0) −𝐺 (2T𝛽U)
2𝛽 + 𝑑 +𝐺 (0) .

In this particular setting, it is possible to derive a result akin to (4.14), with the rate of convergence
𝑛−𝜃 (𝑠D ) and the bandwidth ℎ = 𝑛−1/{2𝑠D+𝑑+𝐺 (0) } , by following the proof of Proposition 4.6.

Now consider the adaptive estimator 𝑓 (𝑡) constructed in Section 3.2 and choose 𝑚ℓ = 0 for all ℓ ∈ N.
The following theorem ensures that it attains the ARC over the collection of Hölder-type functional
classes {Σ(𝑠, 𝐿) : (𝑠, 𝐿) ∈ (0,1] × (0,∞)}. The ARC here corresponds to the minimax rate of conver-
gence stated just below (4.15) up to a logarithmic factor.

Theorem 4.7 (Adaptivity of 𝑓 (𝑡) on D𝑘). The following assertions hold:

1. The ARC is the admissible collection 𝜙 given by

𝜙𝑛 (𝑠, 𝐿) =
(

log𝑛
𝑛

)𝑠/(2𝑠+𝑘+1)
, (𝑠, 𝐿) ∈ (0,1] × (0,∞), 𝑛 ∈ N.

2. Let (𝑠, 𝐿) ∈ (0,1] × (0,∞) be given. There exists a positive real constant 𝐶̃ (𝑠, 𝐿, 𝑘, 𝛿) > 0 such
that

lim sup
𝑛→∞

sup
𝑓 ∈Σ (𝑠,𝐿)

(
log𝑛
𝑛

)−𝑠/(2𝑠+𝑘+1)
𝑅( 𝑓 , 𝑓 ) ≤ 𝐶̃ (𝑠, 𝐿, 𝑘, 𝛿). (4.16)
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Remark 10. Theorem 4.7 exclusively studies the case of a smoothness parameter 𝑠 less than or equal
to 1. We conjecture that a result similar to (4.16), with rate of convergence (𝑛−1 log𝑛) 𝜃𝑘 (𝑠𝑘 ) , can be
obtained for any 𝑠 > 1 by choosing

𝑚ℓ =

⌊
log𝑛
2ℓ

− 𝑘 + 1
2

⌋
.

Nevertheless, this rate of convergence may be not the ARC for 𝑠 > 1.

4.4. Extension to unknown domains

Following a question posed by two referees, we comment briefly in this section about the case in which
the domain D is unknown.

Although the general problem of constructing optimal estimators in this setting is beyond the scope
of this paper, we propose to consider a simple but common situation: assume that the support D is an
unknown compact convex set with finite Lebesgue measure 𝜆(D), and assume further that the target
density 𝑓 is bounded, i.e., its supremum norm over R𝑑 , ‖ 𝑓 ‖∞, is finite. In order to control the error
related to the estimation of the support, we have to consider an integrated risk (over R𝑑) rather than a
pointwise risk. That is, for any estimator 𝑓 of 𝑓 , we are interested in bounding the 𝐿1 integrated risk

𝐼𝑅𝑛 ( 𝑓 , 𝑓 ) = E

{∫
R𝑑

| 𝑓 (𝑥) − 𝑓 (𝑥) |d𝑥
}
.

We propose to estimate 𝑓 by splitting the data into two disjoint subsamples: we estimate the support
of 𝑓 using the first subsample and then use our adaptive estimation procedure on the second subsam-
ple for each point in the estimated domain. More precisely, for some proportion parameter 𝛼 ∈ (0,1)
satisfying 𝛼𝑛 ∈ N, define the two subsamples

X(1)
𝑛 = (𝑋1, . . . , 𝑋(1−𝛼)𝑛), X(2)

𝑛 = (𝑋(1−𝛼)𝑛+1, . . . , 𝑋𝑛),

so that X(1)
𝑛 ∩X(2)

𝑛 = ∅ and X(1)
𝑛 ∪X(2)

𝑛 =X𝑛 in particular.
Define D̂𝑛 as the convex hull of the first subsample X(1)

𝑛 . This serves as an estimator for the convex
support D of the target density 𝑓 , a subject that has been extensively explored in the literature. For
an in-depth review, we direct the reader to Brunel (2018). Now, we remark that, conditionally on the
observations in X(1)

𝑛 , the observations in X(2)
𝑛 ∩ D̂𝑛 are independent and identically distributed with a

common density function given by

𝑔(𝑥) =
𝑓 (𝑥)1D̂𝑛

(𝑥)∫
D̂𝑛

𝑓 (𝑦)d𝑦
, 𝑥 ∈ R𝑑 ,

where 𝑓1D̂𝑛
≤ 𝑓 (since D̂𝑛 ⊆ D).

By definition, note that X(2)
𝑛 contains 𝛼𝑛 observations, i.e., card(X(2)

𝑛 ) = 𝛼𝑛, and let

𝑝𝑛 =
card(X(2)

𝑛 ∩ D̂𝑛)
card(X(2)

𝑛 )

denote the proportion of those observations which fall into the estimated support D̂𝑛; 𝑝𝑛 is the empir-
ical counterpart of 𝑝𝑛 ≡

∫
D̂𝑛

𝑓 (𝑦)d𝑦. Moreover, conditionally on X(1)
𝑛 , the support D̂𝑛 of 𝑔 is known,
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so our local polynomial estimation procedure can be used to obtain the adaptive estimator 𝑔̂(𝑡) defined
in (3.15) for each point 𝑡 ∈ D̂𝑛. Given the above relationship between 𝑔 and 𝑓 , it is natural to define the
estimator of 𝑓 :

𝑓 (𝑥) = 𝑝𝑛𝑔̂(𝑥), 𝑥 ∈ R𝑑 .

Using the triangle inequality, Fubini’s theorem, and Jensen’s inequality, the integrated risk of 𝑓 can be
bounded as follows:

𝐼𝑅𝑛 ( 𝑓 , 𝑓 ) = E

{∫
D

��𝑝𝑛𝑔̂(𝑥) − 𝑝𝑛𝑔(𝑥) + 𝑝𝑛𝑔(𝑥) − 𝑝𝑛𝑔(𝑥) + 𝑝𝑛𝑔(𝑥) − 𝑓 (𝑥)
��d𝑥}

≤ E

[∫
D̂𝑛

E
{
|𝑔̂(𝑥) − 𝑔(𝑥) |

��X(1)
𝑛

}
d𝑥

]
+ E (|𝑝𝑛 − 𝑝𝑛 |) + E

{∫
D\D̂𝑛

𝑓 (𝑥)d𝑥
}

≤ E

(∫
D̂𝑛

[
E
{
|𝑔̂(𝑥) − 𝑔(𝑥) |2

��X(1)
𝑛

}]1/2
d𝑥

)
+ E ( |𝑝𝑛 − 𝑝𝑛 |) + E

{∫
D\D̂𝑛

𝑓 (𝑥)d𝑥
}
.

To bound E( |𝑝𝑛 − 𝑝𝑛 |), we use the fact that, conditionally to X(1)
𝑛 , the quantity 𝛼𝑛 𝑝𝑛 has a Binomial

distribution with parameters 𝛼𝑛 and 𝑝𝑛. To bound E{
∫
D\D̂𝑛

𝑓 (𝑥)d𝑥}, we use Theorem 7 of Brunel
(2018) with the choice 𝑥 = log{(1 − 𝛼)𝑛} ≥ 0. As a result, for 𝑛 large enough, we have

𝐼𝑅𝑛 ( 𝑓 , 𝑓 ) . 𝜆(D) × E

(
sup
𝑥∈D̂𝑛

[
E
{
|𝑔̂(𝑥) − 𝑔(𝑥) |2

��X(1)
𝑛

}]1/2
1{ 𝑝̂𝑛≥1/2}

)
+ 𝜆(D) × P(𝑝𝑛 < 1/2) + 1

√
𝛼𝑛

+
[

‖ 𝑓 ‖∞ + 1
{(1 − 𝛼)𝑛}2/(𝑑+1) +

log{(1 − 𝛼)𝑛}
(1 − 𝛼)𝑛 + 1

(1 − 𝛼)𝑛

]
.

By Theorem 7 of Brunel (2018), the probability P(𝑝𝑛 < 1/2) is exponentially small in 𝑛. It remains
to bound the conditional expectation in the last equation. Note that if 𝑛 is large enough and the target
density 𝑓 belongs to Σ(𝑠, 𝐿), then 𝑔 belongs to Σ(𝑠, 𝐿/𝑝𝑛) ⊆ Σ(𝑠,2𝐿) with probability larger than
1/{(1 − 𝛼)𝑛}, again by Theorem 7 of Brunel (2018). Hence, conditionally on X(1)

𝑛 , by applying item 2
of Theorem 4.5 for every 𝑥 = 𝑡 ∈ D̂𝑛 in [E{|𝑔̂(𝑥) − 𝑔(𝑥) |2 |X(1)

𝑛 }]1/21{ 𝑝̂𝑛≥1/2} , we obtain

𝐼𝑅𝑛 ( 𝑓 , 𝑓 ) . (𝑛−1 log𝑛)𝑠/(2𝑠+𝑑) + 𝑛−2/(𝑑+1) ,

where . depends on 𝑑, ‖ 𝑓 ‖∞, 𝑠 𝐿 and 𝛼.
Assuming further that the target density 𝑓 is bounded away from zero on its support D, i.e., 𝑓0 ≡

inf𝑥∈D 𝑓 (𝑥) > 0, we also get a lower bound on the integrated risk of any estimator 𝑓 of 𝑓 , including 𝑓 .
Indeed, letting D̃𝑛 = {𝑥 ∈ R𝑑 : 𝑓 (𝑥) ≥ 𝑓0/2}, we have

𝐼𝑅𝑛 ( 𝑓 , 𝑓 ) = E

{∫
R𝑑

| 𝑓 (𝑥) − 𝑓 (𝑥) |d𝑥
}
≥ 𝑓0

2
E
{
𝜆(D4D̃𝑛)

}
& 𝑛−2/(𝑑+1) ,

where D4D̃𝑛 denotes the symmetric difference between D and D̃𝑛, and the last inequality follows
from a direct application of Theorem 2 of Brunel (2018). If the domain D was known, we would also
have 𝐼𝑅𝑛 ( 𝑓 , 𝑓 ) & 𝑛−𝑠/(2𝑠+𝑑) .

Therefore, combining the findings from the last two paragraphs, it is reasonable to conjecture that in
the case of unknown compact convex domains, both the minimax rate and the ARC for the 𝐿1 integrated
risk measure should be 𝑛−𝑠/(2𝑠+𝑑) + 𝑛−2/(𝑑+1) when assuming some mild regularity conditions on the
target density 𝑓 . This problem is left open for future research.
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5. Simulations
In this section, we conduct a concise investigation using simulated data, where we assess the perfor-
mance of our estimator against the one provided in the sparr package Davies and Marshall (2023);
see (Davies, Marshall and Hazelton, 2018) for a tutorial. The sparr package is extensively used within
the R community for estimating bivariate density functions on complicated domains. It is worth not-
ing that since 2020, based on the data gathered by David Robinson’s Shiny app Robinson (2015), the
download rate of the sparr package has consistently been approximately three times higher than that
of the other commonly used latticeDensity package (Barry, 2021).

We consider two polynomial sector domains for our simulations, namely D1 and D2.1; recall (4.12).
Notice that the linear sector D1 is a simple domain which satisfies Assumption 1, while D2.1 is a
complicated domain which is not star-shaped around the point of estimation 𝑡 = (0,0). On each domain,
we consider two different types of density functions, which we describe below.

The first two density functions, polynomial in nature, are defined by

𝑓𝑘 (𝑥, 𝑦) =𝐶𝑘

{
(𝑥 − 0.6)2 + (𝑦 − 0.2)2}1D𝑘

(𝑥, 𝑦), 𝑘 ∈ {1,2.1}, (5.1)

where 𝐶𝑘 is a positive normalizing constant which depends on 𝑘 . The contour plots of these two
densities are depicted in Figure 1.

The next two density functions are mixtures of truncated Gaussian distributions defined by

𝑔𝑘 (𝑥, 𝑦) = 𝐴𝑘

[
exp

{
− (𝑥 − 𝑎𝑘)2 + (𝑦 − 𝑏𝑘)2

2(0.4)2

}
+ exp

{
− (𝑥 − 𝑐𝑘)2 + (𝑦 − 𝑑𝑘)2

2(0.15)2

}]
, 𝑘 ∈ {1,2.1},

(5.2)
where 𝐴𝑘 is a positive normalizing constant which depends on 𝑘 , and

𝑎𝑘 = 1/10, 𝑏𝑘 = (1/10)𝑘/2, 𝑐𝑘 = 3/4, and 𝑑𝑘 = (3/4)𝑘/2.

The contour plots of these two densities are depicted in Figure 2.
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Figure 1. The polynomial density functions 𝑓1 (left) and 𝑓2.1 (right) defined in (5.1). Darker regions are associated
with higher values of 𝑓𝑘 .
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Figure 2. The mixtures of truncated Gaussian density functions 𝑔1 (left) and 𝑔2.1 (right) defined in (5.2). Darker
regions are associated with higher values of 𝑔𝑘 .

The sparr estimator 𝑓 SPARR
ℎ

depends on a tuning parameter ℎwhich plays the role of the bandwidth
while our local polynomial estimator 𝑓 LP

𝑚,ℎ
depends on both a bandwidth ℎ and a polynomial degree 𝑚.

Below, we consider the family of polynomial degrees M = {0,1,2,3,4,5} and the family of bandwidths
H = {0.01 + 0.001 × ℓ : ℓ = 0, . . . ,599}. For each target density 𝑓 ∈ { 𝑓1, 𝑓2.1, 𝑔1, 𝑔2.1} and each sample
size 𝑛 ∈ {200,500,1000,2000}, we aim to compare two oracle estimators defined by

𝑓 LP
𝑚∗ ,ℎ∗ where (𝑚∗, ℎ∗) = arg min

(𝑚,ℎ) ∈M×H
E

{�� 𝑓 LP
𝑚,ℎ (𝑡) − 𝑓 (𝑡)

��2} ,
𝑓 SPARR
ℎ◦ where ℎ◦ = arg min

ℎ∈H
E

{�� 𝑓 SPARR
ℎ

(𝑡) − 𝑓 (𝑡)
��2} .

To accomplish this, we generate 𝑅 = 5000 replications of the random samples of size 𝑛, and we compute
for each replication 𝑟 ∈ {1, . . . , 𝑅} the corresponding values of the estimators denoted by [ 𝑓 LP

𝑚,ℎ
(𝑡)]𝑟

and [ 𝑓 SPARR
ℎ

(𝑡)]𝑟 , respectively. Finally, we obtain the estimated oracles using

(𝑚̂∗, ℎ̂∗) = arg min
(𝑚,ℎ) ∈M×H

1
𝑅

𝑅∑︁
𝑟=1

��[ 𝑓 LP
𝑚,ℎ (𝑡)]𝑟 − 𝑓 (𝑡)

��2,
ℎ̂◦ = arg min

ℎ∈H

1
𝑅

𝑅∑︁
𝑟=1

��[ 𝑓 SPARR
ℎ

(𝑡)]𝑟 − 𝑓 (𝑡)
��2.

The results are presented in Figures 3 and 4 below.
Given a random sample of size 𝑛 ∈ {200,500,1000,2000} for each replication, the boxplots of the 𝑅

estimated oracles using our local polynomial method, [ 𝑓 LP
𝑚̂∗ ,ℎ̂∗

(𝑡)]𝑅
𝑟=1, are displayed in the left columns

(LP) and the boxplots of the 𝑅 estimated oracles using the sparr package, [ 𝑓 SPARR
ℎ̂◦

(𝑡)]𝑅
𝑟=1, are dis-

played in the right columns (SPARR). Figure 3 corresponds with the polynomial-type densities 𝑓𝑘
defined in (5.1) for 𝑘 = 1 (left) and 𝑘 = 2.1 (right), while Figure 4 corresponds with the mixtures of
truncated Gaussian distributions 𝑔𝑘 defined in (5.2) for 𝑘 = 1 (left) and 𝑘 = 2.1 (right).
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Figure 3. Boxplots of the 𝑅 replications of the estimated oracles. The target densities are 𝑓1 (left) and 𝑓2.1 (right).
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Figure 4. Boxplots of the 𝑅 replications of the estimated oracles. The target densities are 𝑔1 (left) and 𝑔2.1 (right).

Together, Figures 3 and 4 reveal that, for both the simple domain D1 and the complicated domain
D2.1, our oracle estimates almost always outperform those of the sparr package in mean (black dot
inside each box), in median (horizontal line inside each box), and in interquartile range (height of each
box), under both the polynomial densities 𝑓𝑘 and the mixtures of truncated Gaussian densities 𝑔𝑘 , and
across all sample sizes 𝑛.

The only exception is observed under 𝑔2.1 for 𝑛 = 200, where the means, medians and interquartile
ranges are close to being equal, still giving a slight edge to our method based on the means and quartiles.

Overall, out of the 16 cases considered, our oracle estimates outperform those of the sparr pack-
age in every case. The best polynomial degree selected was always either 1 or 2, which justifies our
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restricted range of polynomial degrees M = {0,1,2,3,4,5}. It is typical of low degree polynomials to
be optimal for local polynomial kernel estimators; see, e.g., p. 126 of Wand and Jones (1995).

Appendix A: Preliminary technical lemmas
Lemma A.1. Let 𝛾 = (𝑚, ℎ) ∈ Γ be given. The Gram matrix B𝛾 defined in (3.3) is symmetric positive
definite. In particular, its smallest eigenvalue 𝜆𝛾 , defined in (3.4), is positive.

Proof of Lemma A.1. For all 𝑣 ∈ R𝐷𝑚 , the fact that 𝑤ℎ ≥ 0 implies

𝑣>B𝛾𝑣 =

∫
V(ℎ)

𝑣>Φ𝛾 (𝑢)Φ>
𝛾 (𝑢)𝑣 𝑤ℎ (𝑢)d𝑢 =

∫
V(ℎ)

{
𝑣>Φ𝛾 (𝑢)

}2
𝑤ℎ (𝑢)d𝑢 ≥ 0. (A.1)

Moreover, if some 𝑣 ∈ R𝐷𝑚 satisfies 𝑣>B𝛾𝑣 = 0, then 𝑣>Φ𝛾 (𝑢) = 0 for almost all 𝑢 ∈ V(ℎ). This
means that the polynomial 𝑣>Φ𝛾 (𝑢), with coefficients 𝑣𝑖 , is zero for almost all 𝑢 ∈ V(ℎ) = Supp(𝑤ℎ).
Since Leb {V(ℎ)} > 0, we conclude that 𝑣𝑖 = 0 for all 𝑖 ∈ {1, . . . , 𝐷𝑚}.

Lemma A.2. Suppose that Assumption 1 holds. First, we have

Leb(Δ0) ≤𝑊ℎ ≤ Leb(Δ) = 2𝑑 , for all ℎ ∈ (0, 𝜌] .

Second, for all 𝑚 ∈ N0, there exists 𝜆★(𝑚) > 0, which also depends on 𝜌, such that

inf
ℎ∈ (0,𝜌]

𝜆𝛾 ≥ 𝜆★(𝑚), where 𝛾 = (𝑚, ℎ).

Proof of Lemma A.2. Since ℎΔ0 ⊆ V(ℎ) ⊆ ℎΔ for all ℎ ∈ (0, 𝜌] by Assumption 1, we have∫
ℎΔ0

𝑤ℎ (𝑢)d𝑢 ≤
∫
V(ℎ)

𝑤ℎ (𝑢)d𝑢 ≤
∫
ℎΔ

𝑤ℎ (𝑢)d𝑢.

Furthermore, Supp(𝑤ℎ) =V(ℎ), so the middle integral is𝑊ℎ as defined in (3.9). With a simple change
of variable and the fact that 𝐾 is identically equal to 1 on Δ according to (3.1), we get

Leb(Δ0) ≤𝑊ℎ ≤ Leb(Δ) = 2𝑑 , for all ℎ ∈ (0, 𝜌],

which proves the first claim of the lemma.
Next, using the fact that V(ℎ) ⊇ ℎΔ0 for all ℎ ∈ (0, 𝜌] by Assumption 1, and applying the linear

change of variable 𝑢̃ = (𝜌/ℎ)𝑢, we have, for any 𝑣 ∈ R𝐷𝑚 ,

𝑣>B𝛾𝑣 =

∫
V(ℎ)

{
𝑣>Φ𝛾 (𝑢)

}2
𝑤ℎ (𝑢)d𝑢 ≥ ℎ−𝑑

∫
ℎΔ0

{
𝑣>Φ𝛾 (𝑢)

}2 d𝑢

= 𝜌−𝑑
∫
𝜌Δ0

{
𝑣>Φ(𝑚,𝜌) (𝑢̃)

}2 d𝑢̃ = 𝜌−𝑑𝑣>
{∫

𝜌Δ0

Φ(𝑚,𝜌) (𝑢̃)Φ>
(𝑚,𝜌) (𝑢̃)d𝑢̃

}
𝑣.

The same line of reasoning as in the proof of Lemma A.1 now shows that the integral on the right-hand
side is a symmetric positive definite matrix. If 𝜇(𝑚, 𝜌) > 0 denotes its smallest eigenvalue, then the last
equation yields

𝜆𝛾 ≥ 𝜌−𝑑𝜇(𝑚, 𝜌) =: 𝜆★(𝑚),

where the dependence on 𝜌 is omitted. This proves the second claim of the lemma.
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Lemma A.3. Let (𝑠, 𝐿) ∈ (0,∞)2 be given. There exists a positive real constant 𝔉𝑠,𝐿 (that also depends
possibly on D, 𝑡 and 𝜌) such that

sup
𝑓 ∈Σ (𝑠,𝐿)

‖ 𝑓 ‖V(𝜌) ≤ 𝔉𝑠,𝐿 ,

where recall from (4.2) that ‖ 𝑓 ‖V(𝜌) = sup𝑢∈V(𝜌) | 𝑓 (𝑡 + 𝑢) |.

Proof of Lemma A.3. We adapt the proof found on p. 7 of Tsybakov (2004) to our framework. Let
𝑓 ∈ Σ(𝑠, 𝐿) and let 𝛾𝜌 = (T𝑠U, 𝜌) ∈ Γ. By definition of Σ(𝑠, 𝐿), there exists a polynomial 𝑞 ∈ PT𝑠U
such that, for any 𝑢 ∈ V(𝜌),

| 𝑓 (𝑡 + 𝑢) − 𝑞(𝑢) | ≤ 𝐿‖𝑢‖𝑠∞. (A.2)

Let us write

𝑞(𝑢) =𝑄>
T𝑠UΦ𝛾𝜌 (𝑢),

where 𝑄T𝑠U denotes the 𝐷T𝑠U × 1 coordinate vector of 𝑞 in the basis Φ𝛾𝜌 . Then, using the fact that
|𝜑𝛼 (𝑢/𝜌) | ≤ 1 for all 𝑢 ∈ V(𝜌) and all 𝛼 ∈ N𝑑

0 , we have

|𝑞(𝑢) | ≤ max
|𝛼 | ≤T𝑠U

|𝜑𝛼 (𝑢/𝜌) | × ‖𝑄T𝑠U‖1 ≤
√︃
𝐷T𝑠U ‖𝑄T𝑠U‖2. (A.3)

Since PT𝑠U is a vector space of finite dimension, the 𝐿1 (𝑤𝜌) and 𝐿2 (𝑤𝜌) norms are equivalent on that
space. Thus, there exists some constant 𝑐𝑠,𝜌 > 0 such that∫

V(𝜌)
|𝑞(𝑢) |𝑤𝜌 (𝑢)d𝑢 ≥ 𝑐𝑠,𝜌

√︄∫
V(𝜌)

𝑞2 (𝑢)𝑤𝜌 (𝑢)d𝑢

= 𝑐𝑠,𝜌

√︃
𝑄>

T𝑠UB𝛾𝜌𝑄T𝑠U ≥ 𝑐𝑠,𝜌
√︃
𝜆𝛾𝜌 ‖𝑄T𝑠U‖2,

(A.4)

where the equality and the last inequality are a consequence of (A.1) and (3.4), respectively. Combin-
ing (A.3) and (A.4), followed by an application of the bound in (A.2), we obtain

|𝑞(𝑢) | ≤

√︃
𝐷T𝑠U

𝑐𝑠,𝜌
√︁
𝜆𝛾𝜌

∫
V(𝜌)

|𝑞(𝑢) |𝑤𝜌 (𝑢)d𝑢

≤

√︃
𝐷T𝑠U

𝑐𝑠,𝜌
√︁
𝜆𝛾𝜌

{∫
V(𝜌)

| 𝑓 (𝑡 + 𝑢) |𝑤𝜌 (𝑢)d𝑢 +
∫
V(𝜌)

𝐿‖𝑢‖𝑠∞𝑤𝜌 (𝑢)d𝑢
}
.

It remains to observe that 0 ≤ 𝑤𝜌 ≤ 𝜌−𝑑 and 𝑓 is a density function to deduce

‖ 𝑓 ‖V(𝜌) ≤ sup
𝑢∈V(𝜌)

|𝑞(𝑢) | + 𝐿𝜌𝑠 ≤

√︃
𝐷T𝑠U

𝑐𝑠,𝜌
√︁
𝜆𝛾𝜌

(
1 + 𝐿𝜌𝑠𝑊𝜌

)
+ 𝐿𝜌𝑠 . (A.5)

The conclusion follows since 𝜆𝛾𝜌 > 0 by Lemma A.1.
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Lemma A.4 (Concentration of 𝑓𝛾 (𝑡) around its mean). Let 𝛾 = (𝑚, ℎ) ∈ Γ be given. Recall the
definitions of 𝑐𝛾 and 𝑣𝛾 from (3.11) and (3.17). Assuming that ‖ 𝑓 ‖V(𝜌) <∞, we have, for all 𝑥 > 0,

P
[�� 𝑓𝛾 (𝑡) − E

{
𝑓𝛾 (𝑡)

}�� > 𝑟𝛾 (𝑣𝛾 , 𝑥)] ≤ 2 exp(−𝑥),

where 𝑟𝛾 (𝑣𝛾 , 𝑥) =
√︁

2𝑣𝛾𝑥 + 𝑐𝛾𝑥.

Proof of Lemma A.4. By the definition of 𝑓𝛾 (𝑡) in (3.6), observe that

𝑓𝛾 (𝑡) − E
{
𝑓𝛾 (𝑡)

}
=

𝑛∑︁
𝑖=1

[𝑌𝑖 (𝛾) − E{𝑌𝑖 (𝛾)}] , (A.6)

where

𝑌𝑖 (𝛾) =
1
𝑛

{
𝐻>
𝛾 (0)𝐻𝛾 (𝑋𝑖 − 𝑡)𝑤ℎ (𝑋𝑖 − 𝑡)

}
.

This readily implies that
∑𝑛

𝑖=1 E
{
𝑌2
𝑖
(𝛾)

}
= 𝑣𝛾 . Furthermore, by Hölder’s inequality, the submultiplica-

tivity property of the spectral norm and the fact that ‖Φ𝛾 (0)Φ>
𝛾 (0)‖2 = 1, note that, for all 𝑢 ∈ V(ℎ),{

𝐻>
𝛾 (0)𝐻𝛾 (𝑢)

}2
=

{
Φ>

𝛾 (0)B−1
𝛾 Φ𝛾 (𝑢)

}2

= Φ>
𝛾 (𝑢)B−1

𝛾 Φ𝛾 (0)Φ>
𝛾 (0)B−1

𝛾 Φ𝛾 (𝑢)

≤ ‖Φ𝛾 (𝑢)‖2‖B−1
𝛾 Φ𝛾 (0)Φ>

𝛾 (0)B−1
𝛾 ‖2‖Φ𝛾 (𝑢)‖2

≤ ‖Φ𝛾 (𝑢)‖2‖B−1
𝛾 ‖2‖Φ𝛾 (0)Φ>

𝛾 (0)‖2‖B−1
𝛾 ‖2‖Φ𝛾 (𝑢)‖2

=
1
𝜆2
𝛾

‖Φ𝛾 (𝑢)‖2
2 ≤

𝐷𝑚

𝜆2
𝛾

.

(A.7)

By the bound (A.7), and the fact that Supp(𝑤ℎ) =V(ℎ) and 0 ≤ 𝑤ℎ ≤ ℎ−𝑑 because of (3.2) and (3.1),
we deduce

|𝑌𝑖 (𝛾) | =
𝑤ℎ (𝑋𝑖 − 𝑡)

𝑛

��𝐻>
𝛾 (0)𝐻𝛾 (𝑋𝑖 − 𝑡)

�� ≤ 1
𝑛ℎ𝑑

√︄
𝐷𝑚

𝜆2
𝛾

= 𝑐𝛾 . (A.8)

Using Bernstein’s inequality (see Boucheron, Lugosi and Massart, 2013, Theorem 2.10), the conclusion
follows.

Lemma A.5 (Concentration of 𝑣̂𝛾 around 𝑣𝛾). Let 𝛾 = (𝑚, ℎ) ∈ Γ be given. Recall the definitions of
𝑣̂𝛾 and 𝑣𝛾 from (3.10) and (3.17). Assuming that 𝑛ℎ𝑑𝑊ℎ ≥ (log𝑛)3 and ‖ 𝑓 ‖V(𝜌) < ∞, there exists a
constant 𝜅1 > 0 that depends on 𝛿 > 1 and ‖ 𝑓 ‖V(𝜌) such that

P
(
|𝑣̂𝛾 − 𝑣𝛾 | > 𝜀𝛾

)
≤ 2 exp

{
− 𝜅1 (log𝑛)3},

where recall from (3.11) that 𝜀𝛾 = (𝛿 − 1)𝐷𝑚𝑊ℎ/(𝑛ℎ𝑑𝜆2
𝛾).

Proof of Lemma A.5. Similarly to the proof of Lemma A.4, observe that

𝑣̂𝛾 − 𝑣𝛾 =

𝑛∑︁
𝑖=1

[𝑍𝑖 (𝛾) − E{𝑍𝑖 (𝛾)}] ,
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where

𝑍𝑖 (𝛾) =
1
𝑛2

{
𝐻>
𝛾 (0)𝐻𝛾 (𝑋𝑖 − 𝑡)𝑤ℎ (𝑋𝑖 − 𝑡)

}2
.

By the bound (A.7), the fact that 𝑤4
ℎ
(𝑋𝑖 − 𝑡) = ℎ−3𝑑𝑤ℎ (𝑋𝑖 − 𝑡) and 0 ≤ 𝑤ℎ ≤ ℎ−𝑑 because of (3.2)

and (3.1), and𝑊ℎ =
∫
R𝑑 𝑤ℎ (𝑢)d𝑢 as defined in (3.9), we have

𝑛∑︁
𝑖=1

E{𝑍2
𝑖 (𝛾)} ≤

‖ 𝑓 ‖V(𝜌) 𝐷
2
𝑚𝑊ℎ

𝑛3ℎ3𝑑𝜆4
𝛾

=: 𝑣̃𝛾 and |𝑍𝑖 (𝛾) | ≤
𝐷𝑚

𝑛2ℎ2𝑑𝜆2
𝛾

=: 𝑐𝛾 .

Using another version of Bernstein’s inequality (see Boucheron, Lugosi and Massart, 2013, Corol-
lary 2.11), we obtain

P
(
|𝑣̂𝛾 − 𝑣𝛾 | > 𝜀𝛾

)
≤ 2 exp

{
−

𝜀2
𝛾

2(𝑣̃𝛾 + 𝑐𝛾𝜀𝛾)

}
= 2 exp

{
− 𝑛ℎ𝑑𝑊ℎ (𝛿 − 1)2

2(‖ 𝑓 ‖V(𝜌) + 𝛿 − 1)

}
.

Since we assumed that 𝑛ℎ𝑑𝑊ℎ ≥ (log𝑛)3, the conclusion follows.

Appendix B: Proofs of the propositions and theorems

Proof of Proposition 4.1. Set 𝑡 ∈ D and 𝛾 = (𝑚, ℎ) ∈ Γ. Since 𝑓 ∈ Σ(𝑠, 𝐿), there exists a polynomial
𝑞 ∈ PT𝑠U such that, for any 𝑢 ∈ V(ℎ),

𝑓 (𝑡 + 𝑢) = 𝑞(𝑢) + 𝑅(𝑢) where |𝑅(𝑢) | ≤ 𝐿‖𝑢‖𝑠∞. (B.1)

Consider the decomposition

𝑞(𝑢) =
∑︁

|𝛼 | ≤T𝑠U

ℎ |𝛼 |𝑞𝛼𝜑𝛼

(𝑢
ℎ

)
=𝑄>

𝑚Φ𝛾 (𝑢) + 1[𝑚+1,∞) (T𝑠U)
∑︁

𝑚< |𝛼 | ≤T𝑠U

𝑞𝛼𝜑𝛼 (𝑢), (B.2)

where 𝑄𝑚 denotes the vector of the first 𝐷𝑚 components of the full 𝐷T𝑠U × 1 coordinate vector of 𝑞 in
the basis Φ(T𝑠U,ℎ) . Given (B.1) and the decomposition of 𝑞 in (B.2), we can write

𝑓 (𝑡 + 𝑢) =𝑄>
𝑚Φ𝛾 (𝑢) + 𝑅(𝑢), (B.3)

where

|𝑅(𝑢) | =

������1[𝑚+1,∞) (T𝑠U)
∑︁

𝑚< |𝛼 | ≤T𝑠U

𝑞𝛼𝜑𝛼 (𝑢) + 𝑅(𝑢)

������
≤ 1[𝑚+1,∞) (T𝑠U)

©­«
∑︁

𝑚< |𝛼 | ≤T𝑠U

|𝑞𝛼 |ª®¬ ‖𝑢‖𝛽𝑚 (𝑠)
∞ + 𝐿‖𝑢‖𝑠∞ ≤ 𝔏𝑚,𝑠,𝐿 ‖𝑢‖𝛽𝑚 (𝑠)

∞ ,

for some appropriate positive real constant 𝔏𝑚,𝑠,𝐿 that depends on 𝑚, 𝑠 and 𝐿, and also denoting
𝛽𝑚 (𝑠) = min(𝑚 + 1, 𝑠). Note that we can choose 𝔏𝑚,𝑠,𝐿 = 𝐿 whenever 𝑚 ≥ T𝑠U because the indicator
1[𝑚+1,∞) (T𝑠U) is simply equal to zero in that case.
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By using the definition of 𝑓𝛾 (𝑡) in (3.6) and the definition of 𝐻𝛾 in (3.5), followed by an application
of (B.3) together with the fact that Φ>

𝛾 (0)𝑄𝑚 = 𝑓 (𝑡), we have

E
{
𝑓𝛾 (𝑡)

}
=

∫
R𝑑

𝐻>
𝛾 (0)𝐻𝛾 (𝑢)𝑤ℎ (𝑢) 𝑓 (𝑡 + 𝑢)d𝑢

= Φ>
𝛾 (0)B−1

𝛾

∫
R𝑑

Φ𝛾 (𝑢)𝑤ℎ (𝑢) 𝑓 (𝑡 + 𝑢)d𝑢

= 𝑓 (𝑡) +Φ>
𝛾 (0)B−1

𝛾

∫
R𝑑

Φ𝛾 (𝑢)𝑤ℎ (𝑢)𝑅(𝑢)d𝑢.

(B.4)

Since ‖Φ𝛾 (0)‖2 = 1, Supp(𝑤ℎ) =V(ℎ), max |𝛼 | ≤𝑚 |𝜑𝛼 (𝑢/ℎ) | ≤ 1 for all 𝑢 ∈ V(ℎ) and ‖𝑢‖∞ ≤ ℎ for
all 𝑢 ∈ V(ℎ), the error term on the right-hand side of (B.4) satisfies����Φ>

𝛾 (0)B−1
𝛾

∫
R𝑑

Φ𝛾 (𝑢)𝑤ℎ (𝑢)𝑅(𝑢)d𝑢
���� ≤ ‖Φ𝛾 (0)‖2





B−1
𝛾

∫
R𝑑

Φ𝛾 (𝑢)𝑤ℎ (𝑢)𝑅(𝑢)d𝑢






2

≤


B−1

𝛾




2





∫
R𝑑

Φ𝛾 (𝑢)𝑤ℎ (𝑢)𝑅(𝑢)d𝑢






2

≤ 𝜆−1
𝛾

√︁
𝐷𝑚

∫
R𝑑

max
|𝛼 | ≤𝑚

|𝜑𝛼 (𝑢/ℎ) | × |𝑅(𝑢) |𝑤ℎ (𝑢)d𝑢

≤ 𝜆−1
𝛾

√︁
𝐷𝑚𝔏𝑚,𝑠,𝐿

∫
R𝑑

‖𝑢‖𝛽𝑚 (𝑠)
∞ 𝑤ℎ (𝑢)d𝑢

≤ 𝜆−1
𝛾

√︁
𝐷𝑚𝔏𝑚,𝑠,𝐿 ℎ

𝛽𝑚 (𝑠)𝑊ℎ .

This concludes the proof.

Proof of Proposition 4.2. By using 𝑤2
ℎ
(𝑢) = ℎ−𝑑𝑤ℎ (𝑢) because of (3.2) and (3.1), the bound (A.7)

from proof of Lemma A.4, and𝑊ℎ =
∫
R𝑑 𝑤ℎ (𝑢)d𝑢 as defined in (3.9), we have

Var
{
𝑓𝛾 (𝑡)

}
≤ 𝑣𝛾 =

1
𝑛

∫
R𝑑

{
𝐻>
𝛾 (0)𝐻𝛾 (𝑢)𝑤ℎ (𝑢)

}2
𝑓 (𝑡 + 𝑢)d𝑢

≤
‖ 𝑓 ‖V(𝜌)

𝑛ℎ𝑑

∫
R𝑑

{
𝐻>
𝛾 (0)𝐻𝛾 (𝑢)

}2
𝑤ℎ (𝑢)d𝑢 ≤

‖ 𝑓 ‖V(𝜌)

𝑛ℎ𝑑
× 𝐷𝑚𝑊ℎ

𝜆2
𝛾

.

This concludes the proof.

Proof of Theorem 4.3. Set 𝑡 ∈ D and 𝛾 = (𝑚, ℎ) ∈ Γ𝑛. By following the line of proof of Theorem 1
(Steps 2 and 3) in Bertin and Klutchnikoff (2017), we obtain

| 𝑓 (𝑡) − 𝑓 (𝑡) | ≤ 2
(
𝐴̂𝛾 + Û𝛾

)
+ | 𝑓𝛾 (𝑡) − 𝑓 (𝑡) |,

where 𝐴̂𝛾 and Û𝛾 are defined in (3.13) and (3.14), respectively. Furthermore, the paper also establishes
that

𝐴̂𝛾 ≤ 2B𝛾 + 2𝑇, where 𝑇 = max
𝛾′∈Γ𝑛

[�� 𝑓𝛾′ (𝑡) − E
{
𝑓𝛾′ (𝑡)

}�� − Û𝛾′
]
+ .
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Recall that (·)+ = max{· ,0}. Together, the last two equations imply

𝑅𝑛 ( 𝑓 , 𝑓 ) ≤ 4B𝛾 + 2
{
E(Û2

𝛾)
}1/2 + 𝑅𝑛 ( 𝑓𝛾 , 𝑓 ) + 4

{
E(𝑇2)

}1/2
. (B.5)

Using the triangle inequality for the E{(·)2}1/2 norm, E(𝑣̂𝛾) = 𝑣𝛾 , and the subadditivity of the func-
tion 𝑥 ↦→ 𝑥1/2, we obtain{

E(Û2
𝛾)

}1/2 ≤
√︃

E
{
2(𝑣̂𝛾 + 𝜀𝛾)pen(𝛾)

}
+ 𝑐𝛾pen(𝛾)

=

√︃
2(𝑣𝛾 + 𝜀𝛾)pen(𝛾) + 𝑐𝛾pen(𝛾)

≤
√︃

2𝑣𝛾pen(𝛾) + 𝑐𝛾pen(𝛾) +
√︃

2𝜀𝛾pen(𝛾)

=U𝛾 +
√︃

2𝜀𝛾pen(𝛾) =U𝛾 +
√︃
(𝛿 − 1)/‖ 𝑓 ‖V(𝜌)

√︃
2𝑣★𝛾pen(𝛾)

≤
{
1 +

√︃
(𝛿 − 1)/‖ 𝑓 ‖V(𝜌)

}
U★
𝛾 ,

(B.6)

where the quantities 𝑣̂𝛾 , 𝜀𝛾 , 𝑐𝛾 , pen(𝛾) and U𝛾 are all defined in Section 3.2, and U★
𝛾 is defined

in (4.5). Note also that, since 𝛿 and |log ℎ| are both at least 1 by assumption (we assumed 𝛿 > 1 in
Section 3.2, and also ℎ ∈ (0, 𝜌] ⊆ (0, 𝑒−1] at the beginning of Section 2), we have pen(𝛾) ≥ 1, and thus√
𝑣𝛾 ≤

√︁
2𝑣𝛾pen(𝛾) + 𝑐𝛾pen(𝛾) =U𝛾 . Therefore,

𝑅𝑛 ( 𝑓𝛾 , 𝑓 ) ≤
��E {

𝑓𝛾 (𝑡)
}
− 𝑓 (𝑡)

�� + (
E

[�� 𝑓𝛾 (𝑡) − E
{
𝑓𝛾 (𝑡)

}��2] )1/2

≤ B𝛾 +
√
𝑣𝛾 ≤ B𝛾 +U𝛾 ≤ B𝛾 +U★

𝛾 ,

(B.7)

where the last inequality follows from 𝑣𝛾 ≤ 𝑣★𝛾 in (4.3).
By applying the bounds (B.6) and (B.7) back into (B.5), we get

𝑅𝑛 ( 𝑓 , 𝑓 ) ≤
[
5B𝛾 +

{
3 + 2

√︃
(𝛿 − 1)/‖ 𝑓 ‖V(𝜌)

}
U★
𝛾

]
+ 4

{
E(𝑇2)

}1/2
. (B.8)

To conclude, it remains to study the term E(𝑇2). To accomplish this, define the event

A =
⋂
𝛾∈Γ𝑛

{
|𝑣̂𝛾 − 𝑣𝛾 | ≤ 𝜀𝛾

}
. (B.9)

We decompose the expectation of interest as follows:

E(𝑇2) = E(𝑇21A) + E(𝑇21A𝑐 ).

Let us bound the term E(𝑇21A𝑐 ) first. Notice that 𝐷𝑚 =

(
𝑚 + 𝑑
𝑑

)
≤ 𝔎𝑑𝑚

𝑑 for some positive real
constant 𝔎𝑑 , which implies

𝑇 ≤ max
𝛾∈Γ𝑛

�� 𝑓𝛾 (𝑡) − E
{
𝑓𝛾 (𝑡)

}�� ≤ 2𝑛max
𝛾∈Γ𝑛

𝑐𝛾 ≤ 2𝑑+1
√︁
𝔎𝑑 (log𝑛)𝑑/2−3𝑛 max

𝛾∈Γ𝑛

1
𝜆𝛾
,

where the second inequality follows from (A.6) and (A.8), and the last inequality follows from the
definition of 𝑐𝛾 in (3.11) and the aforementioned bound on 𝐷𝑚 together with the fact that 𝑚 ≤ log𝑛
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and (𝑛ℎ𝑑)−1 ≤𝑊ℎ (log𝑛)−3 ≤ 2𝑑 (log𝑛)−3 for (𝑚, ℎ) ∈ Γ𝑛; recall (3.9). Using our assumption on 𝜆𝛾
in (4.4), together with that fact that 𝑚 ≤ log𝑛 and ℎ ≥ 𝜌𝑛−1 (recall (3.7)), we obtain, for 𝑛 large enough,

𝑇 ≤ 2𝑑+1
√︁
𝔎𝑑 (log𝑛)𝑑/2−3𝑛 exp

{
2𝑏(log𝑛)2}.

By a union bound and the concentration bound on 𝑣̂𝛾 in Lemma A.5, this implies

E(𝑇21A𝑐 ) ≤ 4𝑑+1𝔎𝑑 (log𝑛)𝑑−6𝑛2 exp
{
4𝑏(log𝑛)2} × P(A𝑐)

≤ 4𝑑+1𝔎𝑑 (log𝑛)𝑑−6𝑛2 exp
{
4𝑏(log𝑛)2} × card(Γ𝑛) × 2 exp

{
− 𝜅1 (log𝑛)3}.

Since card(Γ𝑛) ≤ log𝑛, we deduce that

E(𝑇21A𝑐 ) . exp
{
− (𝜅1/2) (log𝑛)3}, (B.10)

with much room to spare.
It remains to study E(𝑇21A). Note that under the event A defined in (B.9), we have Û𝛾 ≥ U𝛾 for all

𝛾 ∈ Γ𝑛 (to see this, compare (3.14) and (3.16)). This implies that

E(𝑇21A) ≤ E(𝑇2)

where

𝑇 = max
𝛾′∈Γ𝑛

[�� 𝑓𝛾′ (𝑡) − E
{
𝑓𝛾′ (𝑡)

}�� −U𝛾′
]
+ .

For simplicity of notations, define 𝑟𝛾′ (𝑥) = 𝑟𝛾′ (𝑣𝛾′ , 𝑥); recall (3.12). Using integration by parts and the
change of variable 𝑢 = 𝑟𝛾′ (𝑥), we obtain

E(𝑇2) ≤
∑︁
𝛾′∈Γ𝑛

E
( [�� 𝑓𝛾′ (𝑡) − E

{
𝑓𝛾′ (𝑡)

}�� −U𝛾′
]2
+

)
=

∑︁
𝛾′∈Γ𝑛

∫ ∞

0
2𝑢P

[�� 𝑓𝛾′ (𝑡) − E
{
𝑓𝛾′ (𝑡)

}�� > U𝛾′ + 𝑢
]

d𝑢

=
∑︁
𝛾′∈Γ𝑛

∫ ∞

0
2𝑟𝛾′ (𝑥)𝑟′𝛾′ (𝑥)P

[�� 𝑓𝛾′ (𝑡) − E
{
𝑓𝛾′ (𝑡)

}�� > 𝑟𝛾′ {pen(𝛾′)} + 𝑟𝛾′ (𝑥)
]

d𝑥.

Now, using the fact that 𝑟𝛾′ (·) is a sub-additive function which also satisfies 𝑥𝑟 ′
𝛾′ (𝑥) ≤ 𝑟𝛾′ (𝑥) for all

𝑥 > 0, we get

E(𝑇2) ≤
∑︁
𝛾′∈Γ𝑛

∫ ∞

0
2𝑥−1𝑟2

𝛾′ (𝑥)P
[�� 𝑓𝛾′ (𝑡) − E

{
𝑓𝛾′ (𝑡)

}�� > 𝑟𝛾′ {pen(𝛾′) + 𝑥}
]

d𝑥.

As we noted earlier just above (B.7), we have pen(𝛾′) ≥ 1 because of our assumptions 𝛿 > 1 and
−| log 𝜌 | ≥ 1, which allows us to apply the concentration of 𝑓𝛾′ (𝑡) around its mean in Lemma A.4.
Together with the identity 𝑟2

𝛾′ (𝑥) ≤ 4𝑣𝛾′𝑥 + 2𝑐2
𝛾′𝑥

2 and |log ℎℓ′ | = |log 𝜌 − ℓ′ | ≥ ℓ′ − | log 𝜌 | ≥ ℓ′, this
yields

E(𝑇2) ≤
∑︁
𝛾′∈Γ𝑛

∫ ∞

0
2𝑥−1𝑟2

𝛾′ (𝑥) × 2 exp
(
−𝑑𝛿 |log ℎℓ′ | −Λ𝛾′ − 𝑥

)
d𝑥

≤ 𝐼1
∑︁
𝛾′∈Γ𝑛

(2𝑣𝛾′ + 𝑐2
𝛾′ ) exp

(
−𝑑𝛿ℓ′ −Λ𝛾′

)
,



Local polynomial density estimation on complicated domains 29

where 𝐼1 =
∫ ∞

0 8 max(1, 𝑥) exp(−𝑥)d𝑥 < ∞. Since 𝑛ℎ𝑑
ℓ′𝑊ℎℓ′ ≥ (log𝑛)3, Λ𝛾′ = 2|log(𝜆𝛾′ ) | and ℎℓ′ =

𝜌 exp(−ℓ′), we can write, using 𝑣𝛾 ≤ 𝑣★𝛾 in Proposition 4.2 and 𝑐𝛾′ in (3.11),

E(𝑇2) ≤ 𝐼1

𝑛𝜌𝑑

{
2 ‖ 𝑓 ‖V(𝜌) +

1
(log𝑛)3

} ∑︁
ℓ′∈L𝑛

𝐷𝑚ℓ′𝑊ℎℓ′ exp {−𝑑 (𝛿 − 1)ℓ′)} .

Moreover, since 𝐷𝑚ℓ′ ≤ 𝔎𝑑𝑚
𝑑
ℓ′ , 𝑚ℓ′ ≤ log𝑛 for all ℓ′ ∈ L𝑛, and𝑊ℎℓ′ ≤ 2𝑑 , we can write

E(𝑇2) ≤ 𝐼1𝔎𝑑 (log𝑛)𝑑2𝑑

𝑛𝜌𝑑

{
2 ‖ 𝑓 ‖V(𝜌) +

1
(log𝑛)3

} ∑︁
ℓ′∈L𝑛

exp {−𝑑 (𝛿 − 1)ℓ′} .

Since 𝑑 (𝛿− 1) is a positive number (we assumed 𝛿 > 1 in Section 3.2), the exponential terms above are
summable, so we have

E(𝑇21A) ≤ E(𝑇2) . (log𝑛)𝑑
𝑛

. (B.11)

By combining (B.10) and (B.11), we conclude that E(𝑇2) . (log𝑛)𝑑/𝑛. Together with (B.8), the proof
of (4.6) is complete.

Proof of Proposition 4.4. In this proof, the parameters 𝛾 = (𝑚, ℎ) are chosen to be the ones in (4.7).
By combining the bounds on the bias and variance found in Propositions 4.1 and 4.2 together with
Lemma A.2 (𝑊ℎ ≤ 2𝑑 and infℎ∈ (0,𝜌] 𝜆𝛾 ≥ 𝜆★(𝑚) > 0 under Assumption 1) and Lemma A.3, we obtain

𝑅𝑛 ( 𝑓𝛾 , 𝑓 ) ≤
√
𝐷𝑚

𝜆𝛾
×

{
𝑊2

ℎ𝔏
2
𝑚,𝑠,𝐿 ℎ

2𝑠 +
𝑊ℎ‖ 𝑓 ‖V(𝜌)

𝑛ℎ𝑑

}1/2

≤ 2𝑑
√
𝐷𝑚

𝜆★(𝑚)
×

[
𝔏2
𝑚,𝑠,𝐿 ℎ

2𝑠 +
𝔉𝑠,𝐿

2𝑑𝑛ℎ𝑑

]1/2

.

Our choice of ℎ in (4.7) is simply the minimizer of the last bound. In particular, it should be noted that
ℎ decreases as 𝑛 increases. Elementary computations show that, with this choice of ℎ, the above yields

𝑅𝑛 ( 𝑓𝛾 , 𝑓 ) ≤ 𝐶 (𝑠, 𝐿)𝑁𝑛 (𝑠, 𝐿),

where 𝐶 (𝑠, 𝐿) is the positive real constant defined in (4.9) and 𝑁𝑛 (𝑠, 𝐿) = 𝑛−𝑠/(2𝑠+𝑑) is the rate of
convergence defined in (4.8). This proves the upper bound.

To prove the lower bound, we use Lemma 3 of Lepski (2015). It is sufficient to construct two func-
tions 𝑓0 and 𝑓1 that satisfy the following properties:

1. 𝑓0 and 𝑓1 are two density functions that belong to Σ(𝑠, 𝐿).
2. There exists a positive real constant 𝐴 = 𝐴(𝑠, 𝐿) > 0 such that 𝑓1 (𝑡) − 𝑓0 (𝑡) = 𝐴ℎ𝑠 .
3. There exists a positive real constant 𝔞 = 𝔞(𝑠, 𝐿) > 0 such that

E 𝑓0 ,𝑛

{
𝑛∏
𝑖=1

𝑓1 (𝑋𝑖)
𝑓0 (𝑋𝑖)

}2

≤ 𝔞,

where E 𝑓0 ,𝑛 denotes the expectation with respect to the law P𝑓0 ,𝑛 of the random sample X𝑛,
provided 𝑓0 is the true density of the observations 𝑋𝑖 .
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To construct these densities, we consider an auxiliary density function 𝜓 ∈ C∞ (R𝑑) whose support is
Δ and which satisfies 𝜓(0) = Leb(D). Such a function can easily be constructed. We also define, for
any 𝑢 ∈ R𝑑 ,

𝜓ℎ (𝑢) = 𝜓
(𝑢
ℎ

)
1V(ℎ) (𝑢) and 𝑐ℎ =

1
Leb(D)

∫
R𝑑

𝜓ℎ (𝑢)d𝑢.

Furthermore, for all 𝑥 ∈ R𝑑 , define

𝑓0 (𝑥) =
1D (𝑥)

Leb(D) and 𝑓1 (𝑥) = 𝑓0 (𝑥) + 𝐴ℎ𝑠𝜓̃ℎ (𝑥 − 𝑡)1D (𝑥),

for some constant 𝐴 > 0 to be chosen later, where

𝜓̃ℎ (𝑢) =
{𝜓ℎ (𝑢)/Leb(D)} − 𝑐ℎ

1 − 𝑐ℎ
, 𝑢 ∈ R𝑑 .

Since 𝜓̃(0) = 1, the second point follows.
Now, since 𝜓 is a density function, we have 𝑐ℎ ≤ ℎ𝑑/Leb(D). Hence, using the fact that the function

𝑥 ↦→ −𝑥/(1 − 𝑥) is decreasing on (0,1), and taking 𝑛 large enough (and thus ℎ small enough by (4.7))
so that ℎ𝑑/Leb(D) ≤ 1/2, we have

𝜓̃ℎ (𝑢) ≥
−𝑐ℎ

1 − 𝑐ℎ
≥ −ℎ𝑑/Leb(D)

1 − ℎ𝑑/Leb(D)
≥ −2

ℎ𝑑

Leb(D) ,

which also implies that 𝑓1 ≥ 0 for large 𝑛. We easily deduce that 𝑓1 is a density function using the fact
that

∫
D−𝑡 𝜓̃ℎ (𝑢)d𝑢 = 0. Since 𝑓0 is also a density function, it remains to prove that both 𝑓0 and 𝑓1 belong

to Σ(𝑠, 𝐿) to obtain the first point. This is obvious for 𝑓0. Now, since 𝜓 ∈ C∞ (R𝑑) is supported on Δ,
there exists a positive real constant 𝐿𝑠 (𝜓) > 0 such that 𝜓 ∈ Σ{𝑠, 𝐿𝑠 (𝜓)}. In turn, this implies that
𝑓1 ∈ Σ{𝑠, 𝐴 × 2 𝐿𝑠 (𝜓)/Leb(D)}. By choosing the constant 𝐴 = {2 𝐿𝑠 (𝜓)/Leb(D)}−1𝐿, we deduce
that 𝑓1 ∈ Σ(𝑠, 𝐿).

Lastly, it remains to prove the third point. Note that

E 𝑓0 ,𝑛

{
𝑛∏
𝑖=1

𝑓1 (𝑋𝑖)
𝑓0 (𝑋𝑖)

}2

=

{∫
D

𝑓 2
1 (𝑥)
𝑓0 (𝑥)

d𝑥

}𝑛

=

[∫
D−𝑡

{1 + Leb(D)𝐴ℎ𝑠𝜓̃ℎ (𝑢)}2

Leb(D) d𝑢
]𝑛

=

{
1 + Leb(D)𝐴2ℎ2𝑠

∫
D−𝑡

𝜓̃2
ℎ (𝑢)d𝑢

}𝑛
.

(B.12)

To obtain the last equality, we used the fact that
∫
D−𝑡 𝜓̃ℎ (𝑢)d𝑢 = 0. It remains to study the integral

that appears on the last line. Using the elementary identity (𝑎 + 𝑏)2 ≤ 2𝑎2 + 2𝑏2 together with the
aforementioned bound 𝑐ℎ ≤ ℎ𝑑/Leb(D), and taking 𝑛 large enough (and thus ℎ small enough by (4.7))
so that

1 − 𝑐ℎ ≥ 1/2 and ℎ𝑑 ≤ 1/Leb(D),
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we have ∫
D−𝑡

𝜓̃2
ℎ (𝑢)d𝑥 ≤

2
{Leb(D)}2

∫
V(ℎ)

𝜓2 (𝑢/ℎ)
(1 − 𝑐ℎ)2 d𝑢 + 2

∫
D

(−𝑐ℎ)2

(1 − 𝑐ℎ)2 d𝑢

≤ 8ℎ𝑑

{Leb(D)}2

∫
Δ

𝜓2 (𝑢)d𝑢 + 8ℎ2𝑑

Leb(D)

≤ 8
{Leb(D)}2

{∫
Δ

𝜓2 (𝑢)d𝑢 + 1
}
ℎ𝑑 .

(B.13)

Finally, since 1 + 𝑥 ≤ 𝑒𝑥 , putting (B.13) into (B.12) yields the following bound:

E 𝑓0 ,𝑛

{
𝑛∏
𝑖=1

𝑓1 (𝑋𝑖)
𝑓0 (𝑋𝑖)

}2

≤
[
1 + 8𝐴2

Leb(D)

{∫
Δ

𝜓2 (𝑢)d𝑢 + 1
}
ℎ2𝑠+𝑑

]𝑛
≤ exp

[
8𝐴2

Leb(D)

{∫
Δ

𝜓2 (𝑢)d𝑢 + 1
}
𝑛ℎ2𝑠+𝑑

]
= exp

[
𝑑𝔉𝑠,𝐿

2𝑑+1𝑠𝔏2
𝑚,𝑠,𝐿

× 8𝐴2

Leb(D)

{∫
Δ

𝜓2 (𝑢)d𝑢 + 1
}]

=: 𝔞.

(B.14)

This concludes the proof.

Proof of Theorem 4.5. We prove the upper bound first. Let (𝑠, 𝐿) ∈ (0,∞)2 be given. Under Assump-
tion 1, Lemma A.2 shows that

𝜆𝛾 ≥ min
0≤𝑚′≤b2𝑠+𝑑c

𝜆 (𝑚′ ,ℎ) ≥ 𝜆• (𝑠, 𝑑) > 0,

where recall the quantity 𝜆• (𝑠, 𝑑) = min0≤𝑚′≤b2𝑠+𝑑c 𝜆★(𝑚′) depends only on 𝑠 and 𝑑. In particular, the
condition (4.4) of Theorem 4.3 is satisfied. Moreover, Lemma A.3 shows that there exists an appropriate
constant 𝔉𝑠,𝐿 > 0 such that

sup
𝑓 ∈Σ (𝑠,𝐿)

‖ 𝑓 ‖V(𝜌) ≤ 𝔉𝑠,𝐿 <∞.

Therefore, Theorem 4.3 can be applied to obtain

𝑅𝑛 ( 𝑓 , 𝑓 ) ≤ min
𝛾∈Γ𝑛

[
5B𝛾 +

{
3 + 2

√︃
(𝛿 − 1)/‖ 𝑓 ‖V(𝜌)

}
U★
𝛾

]
+ O

{√︂
(log𝑛)𝑑

𝑛

}
. (B.15)

Now, define

ℓ0 =

⌊
1

2𝑠 + 𝑑 log

{
(𝔏★

𝑠,𝐿
)2

𝔉𝑠,𝐿

× 𝑛

log𝑛

}
+ log 𝜌

⌋
,

where recall 𝔏★
𝑠,𝐿

= max0≤𝑚′≤b2𝑠+𝑑c 𝔏𝑚′ ,𝑠,𝐿 depends only on 𝑠, 𝐿 and 𝑑. In the following, consider 𝑛
large enough so that ℓ0 ≥ 1. Using this definition, we have

1 ≤ ℎℓ0

{
𝔉𝑠,𝐿

(𝔏★
𝑠,𝐿

)2 × log𝑛
𝑛

}−1/(2𝑠+𝑑)

≤ 𝑒. (B.16)
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In the following, we consider 𝛾0 = (𝑚ℓ0 , ℎℓ0 ) which belongs to Γ𝑛. From (4.10), recall that

𝑚ℓ0 =

⌊
log𝑛
2ℓ0

⌋
.

Let us remark that if 𝛾 = (𝑚, ℎ) ∈ Γ𝑛 is such that 𝛾 � 𝛾0, then 𝑚 ≤ 𝑚ℓ0 ≤ 2𝑠 + 𝑑 for 𝑛 large enough.
By Proposition 4.1, we have directly, for 𝑛 large enough,

B𝛾0 = max
𝛾∈Γ𝑛
𝛾�𝛾0

��E {
𝑓𝛾 (𝑡)

}
− 𝑓 (𝑡)

��
≤ max

𝛾∈Γ𝑛
𝛾�𝛾0

𝑊ℎ

√
𝐷𝑚

𝜆𝛾
×𝔏𝑚,𝑠,𝐿 ℎ

𝛽𝑚 (𝑠) ≤ 𝐶★(𝑠, 𝑑) max
𝛾∈Γ𝑛
𝛾�𝛾0

𝔏𝑚,𝑠,𝐿 ℎ
𝛽𝑚 (𝑠) ,

(B.17)

where

𝐶★(𝑠, 𝑑) =
2𝑑

√︁
𝐷★(𝑠, 𝑑)

𝜆• (𝑠, 𝑑)
and 𝐷★(𝑠, 𝑑) = max

0≤𝑚′≤2𝑠+𝑑
𝐷𝑚′ . (B.18)

It remains to bound the maximum that appears on the right-hand side of (B.17). To achieve this, fix
𝛾 ∈ Γ𝑛 such that 𝛾 � 𝛾0. By definition, there exists ℓ ∈ L𝑛 such that 𝛾 = (𝑚ℓ , ℎℓ ). Assume first that
𝑚ℓ + 1 < 𝑠, so that 𝛽𝑚ℓ

(𝑠) =𝑚ℓ + 1. Then, using ℎℓ = 𝜌𝑒−ℓ ≤ 𝑒−ℓ , we have

𝔏𝑚ℓ ,𝑠,𝐿ℎ
𝛽𝑚ℓ

(𝑠)
ℓ

≤ 𝔏★
𝑠,𝐿 exp

(
−ℓ log𝑛

2ℓ

)
=
𝔏★
𝑠,𝐿√
𝑛
. (B.19)

Similarly, if we assume 𝑚ℓ + 1 ≥ 𝑠, then using the upper bound in (B.16), we have

𝔏𝑚ℓ ,𝑠,𝐿ℎ
𝛽𝑚ℓ

(𝑠)
ℓ

≤ 𝔏★
𝑠,𝐿ℎ

𝑠
ℓ
≤ 𝔏★

𝑠,𝐿ℎ
𝑠
ℓ0

≤ 𝑒𝑠 𝔉 𝑠/(2𝑠+𝑑)
𝑠,𝐿

(𝔏★
𝑠,𝐿)

𝑑/(2𝑠+𝑑)
(

log𝑛
𝑛

)𝑠/(2𝑠+𝑑)
.

(B.20)

Therefore, by putting the estimates (B.19) and (B.20) back into (B.17), we have, for 𝑛 large enough,

B𝛾0 ≤ 𝑒𝑠𝐶★(𝑠, 𝑑)𝔉 𝑠/(2𝑠+𝑑)
𝑠,𝐿

(𝔏★
𝑠,𝐿)

𝑑/(2𝑠+𝑑)
(

log𝑛
𝑛

)𝑠/(2𝑠+𝑑)
. (B.21)

Now, let us bound U★
𝛾0

. By combining (4.5) and (3.12), we can write

U★
𝛾0

=

√︃
2𝑣★𝛾0pen(𝛾0) + 𝑐𝛾0pen(𝛾0), with pen(𝛾0) = 𝑑𝛿 |log ℎℓ0 | + 2|log(𝜆𝛾0 ) |.

Let us first control the terms 𝑐𝛾0 and 𝑣★𝛾0
defined (3.11) and (4.3), respectively. Using the notation

in (B.18), we have

𝑐𝛾0 ≤
√︁
𝐷★(𝑠, 𝑑)
𝜆𝛾0

× 1
𝑛ℎ𝑑

ℓ0

≤ 𝐶★(𝑠, 𝑑)
2𝑑

× 1
𝑛ℎ𝑑

ℓ0

,

𝑣★𝛾0
≤ 2𝑑𝐷★(𝑠, 𝑑)

𝜆2
𝛾0

×
𝔉𝑠,𝐿

𝑛ℎ𝑑
ℓ0

≤
{𝐶★(𝑠, 𝑑)}2𝔉𝑠,𝐿

2𝑑
× 1
𝑛ℎ𝑑

ℓ0

.

(B.22)
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Now, using the subadditivity of the function 𝑥 ↦→
√︃

2𝑣★𝛾0𝑥 + 𝑐𝛾0𝑥, the four bounds in (B.22), and the
fact that the functions 𝜆 ↦→ | log𝜆 |/𝜆𝑘 (𝑘 ∈ {1,2}) are decreasing for 𝜆 ∈ (0,1) and uniformly bounded
by 1 for 𝜆 ≥ 1, we obtain

U★
𝛾0

≤
√︃

2𝑣★𝛾0𝑑𝛿 |log ℎℓ0 | + 𝑐𝛾0𝑑𝛿 |log ℎℓ0 | +
√︃

4𝑣★𝛾0 |log(𝜆𝛾0 ) | + 2𝑐𝛾0 |log(𝜆𝛾0 ) |

≤
√√

{𝐶★(𝑠, 𝑑)}2𝔉𝑠,𝐿𝑑𝛿

2𝑑−1 ×
| log ℎℓ0 |
𝑛ℎ𝑑

ℓ0

+ 𝐶
★(𝑠, 𝑑)𝑑𝛿

2𝑑
×
| log ℎℓ0 |
𝑛ℎ𝑑

ℓ0

+

√√√√ 2𝑑+2𝐷★(𝑠, 𝑑)𝔉𝑠,𝐿

min
{
1, 𝜆2

• (𝑠,𝑑)
| log𝜆• (𝑠,𝑑) |

} × 1
𝑛ℎ𝑑

ℓ0

+
2
√︁
𝐷★(𝑠, 𝑑)

min
{
1, 𝜆• (𝑠,𝑑)

| log𝜆• (𝑠,𝑑) |
} × 1

𝑛ℎ𝑑
ℓ0

.

As 𝑛→∞, note that ℎℓ0 → 0, 𝑛ℎ𝑑
ℓ0
→∞ and | log ℎℓ0 |/(𝑛ℎ𝑑ℓ0

) → 0 by (B.16). Therefore, the first term
on the right-hand side of the last equation leads the asymptotic behavior of the upper bound on U★

𝛾0
.

In particular, for 𝑛 large enough, the second, third and fourth terms are all bounded from above by the
first term, so that

U★
𝛾0

≤ 4

√√
{𝐶★(𝑠, 𝑑)}2𝔉𝑠,𝐿𝑑𝛿

2𝑑−1 ×
| log ℎℓ0 |
𝑛ℎ𝑑

ℓ0

=
𝐶★(𝑠, 𝑑)

√︁
𝔉𝑠,𝐿𝑑𝛿

2(𝑑−5)/2
×

(
| log ℎℓ0 |
𝑛ℎ𝑑

ℓ0

)1/2

.

After straightforward calculations, this yields

U★
𝛾0

.𝐶★(𝑠, 𝑑)
√
𝑑𝛿 𝔉

𝑠/(2𝑠+𝑑)
𝑠,𝐿

(𝔏★
𝑠,𝐿)

𝑑/(2𝑠+𝑑)
(

log𝑛
𝑛

)𝑠/(2𝑠+𝑑)
, (B.23)

where . is independent of all parameters.
By taking the upper bounds on B𝛾0 and U★

𝛾0
in (B.21) and (B.23) back into (B.15), we get

𝑅𝑛 ( 𝑓 , 𝑓 ) . 𝔠(𝛿, ‖ 𝑓 ‖V(𝜌) ) 𝑒𝑠𝐶★(𝑠, 𝑑)
√
𝑑𝛿 𝔉

𝑠/(2𝑠+𝑑)
𝑠,𝐿

(𝔏★
𝑠,𝐿)

𝑑/(2𝑠+𝑑)
(

log𝑛
𝑛

)𝑠/(2𝑠+𝑑)
,

where 𝔠(𝛿, ‖ 𝑓 ‖V(𝜌) ) = 8 + 2{(𝛿 − 1)/‖ 𝑓 ‖V(𝜌) }1/2 and . is again independent of all parameters. This
proves the upper bound.

Next, let us prove that the admissible collection 𝜙 defined in (4.11) is the ARC. To do so, we will
use the result established in Section 5.6.1 of Rebelles (2015). In particular, it is sufficient to prove that
for any (𝑠, 𝐿) ∈ K and (𝑠′, 𝐿′) ∈ K such that 𝑠 < 𝑠′, there are two functions 𝑓0 and 𝑓1 that satisfy the
following properties:

1. 𝑓0 and 𝑓1 are density functions that belong to Σ(𝑠′, 𝐿′) and Σ(𝑠, 𝐿), respectively.
2. | 𝑓1 (𝑡) − 𝑓0 (𝑡) | � 𝜙𝑛 (𝑠, 𝐿) = (𝑛−1 log𝑛)𝑠/(2𝑠+𝑑) . (Here, � means both . and & hold.)
3. For any positive real 𝜏 such that 𝑠/(2𝑠 + 𝑑) < 𝜏 < 𝑠′/(2𝑠′ + 𝑑), we have

E 𝑓0 ,𝑛

{
𝑛∏
𝑖=1

𝑓1 (𝑋𝑖)
𝑓0 (𝑋𝑖)

}2

. 𝑛𝜏𝜙𝑛 (𝑠, 𝐿).

Similarly to the proof of Proposition 4.4, let us define

𝑓0 (𝑥) =
1D (𝑥)

Leb(D) and 𝑓1 (𝑥) = 𝑓0 (𝑥) + 𝐴ℎ𝑠𝜓̃ℎ (𝑥 − 𝑡)1D (𝑥),
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where the quantities 𝜓̃ℎ and 𝐴 have already been introduced in the proof of Proposition 4.4, and ℎ is
defined in a slightly different way by

ℎ =


1

8𝐴2

Leb(D)
{∫

Δ
𝜓2 (𝑢)d𝑢 + 1

} × log𝑛𝜚

𝑛


1/(2𝑠+𝑑)

, 0 < 𝜚 <
𝑠′

2𝑠′ + 𝑑 − 𝑠

2𝑠 + 𝑑 .

It is straightforward to verify the first and second points by employing arguments that are virtually
identical to those presented in the proof of Proposition 4.4. For the third point, we have, by the same
line of reasoning that led us to (B.14),

E 𝑓0 ,𝑛

{
𝑛∏
𝑖=1

𝑓1 (𝑋𝑖)
𝑓0 (𝑋𝑖)

}2

≤ exp
[

8𝐴2

Leb(D)

{∫
Δ

𝜓2 (𝑢)d𝑢 + 1
}
𝑛ℎ2𝑠+𝑑

]
≤ 𝑛𝜚 ≤ 𝑛𝜚+𝑠/(2𝑠+𝑑)

(
log𝑛
𝑛

)𝑠/(2𝑠+𝑑)
≤ 𝑛𝜏𝜙𝑛 (𝑠, 𝐿),

(B.24)

where 𝜏 = 𝜚 + 𝑠/(2𝑠 + 𝑑). This shows that three conditions above, or equivalently the conditions of
Lemma 4 of Rebelles (2015), are satisfied with 𝑎−1

𝑛 � 𝜙𝑛 (𝑠, 𝐿) and 𝑏𝑛 = 𝑛𝜏 , which implies that the
collection 𝜙 defined in (4.11) is the ARC.

Proof of Proposition 4.6. Let 𝜌 = 1 so that ℎ ∈ (0,1]. Also, throughout the proof, let 𝛾𝑘 = (𝑚, ℎ) with
𝑚 = T𝑠𝑘U. Recall the definition of 𝑤ℎ from (3.2) and apply it to the domain D𝑘 in (4.12) to obtain

𝑊ℎ =

∫
R𝑑

𝑤ℎ (𝑢)d𝑢 = ℎ−2
∫ ℎ

0

∫ 𝑥𝑘

0
1d𝑦d𝑥 =

ℎ𝑘−1

𝑘 + 1
. (B.25)

Recall the definition of the Gram matrix B𝛾𝑘 from (3.3). By the simple change of variables (𝜉, 𝜂) =
(𝑥/ℎ, 𝑦/ℎ) compared with the previous integral, we have, for any 𝑣 ∈ R𝐷𝑚 ,

𝑣>B𝛾𝑘 𝑣 =

∫ 1

0

∫ ℎ𝑘−1 𝜉 𝑘

0

{
𝑣>Φ𝑚,1 (𝜉, 𝜂)

}2 d𝜂d𝜉

=
∑︁

|𝛼 | ≤𝑚

∑︁
|𝛽 | ≤𝑚

𝑣𝛼𝑣𝛽

∫ 1

0

∫ ℎ𝑘−1 𝜉 𝑘

0
𝜉𝛼1+𝛽1𝜂𝛼2+𝛽2d𝜂d𝜉

=
∑︁

|𝛼 | ≤𝑚

∑︁
|𝛽 | ≤𝑚

𝑣𝛼𝑣𝛽

∫ 1

0
𝜉𝛼1+𝛽1

(ℎ𝑘−1𝜉𝑘)𝛼2+𝛽2+1

𝛼2 + 𝛽2 + 1
d𝜉

=
∑︁

|𝛼 | ≤𝑚

∑︁
|𝛽 | ≤𝑚

𝑐𝑘 (𝛼, 𝛽)𝑣𝛼𝑣𝛽ℎ (𝑘−1) (𝛼2+𝛽2+1) ,

(B.26)

where

𝑐𝑘 (𝛼, 𝛽) = [(𝛼2 + 𝛽2 + 1){𝛼1 + 𝛽1 + 𝑘 (𝛼2 + 𝛽2 + 1) + 1}]−1 > 0.
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Denote 𝐴𝛼,𝛽 (𝑣) = 𝑐𝑘 (𝛼, 𝛽)𝑣𝛼𝑣𝛽 and 𝛼★ = 𝛽★ = (0, 𝑚), where the dependence in 𝑘 is omitted.
By (B.26), we can write, for all 𝑣 ∈ R𝐷𝑚 \ {(0, . . . ,0)},

𝑣>B𝛾𝑘 𝑣 =
∑︁

|𝛼 | ≤𝑚

∑︁
|𝛽 | ≤𝑚

𝐴𝛼,𝛽 (𝑣)ℎ (𝑘−1) (𝛼2+𝛽2+1) = ℎ (𝑘−1) (2𝑚+1)𝜓𝑣 (1/ℎ),

where 𝜓𝑣 is a polynomial of degree (𝑘 − 1) (2𝑚) which satisfies 𝜓𝑣 (0) = 𝐴𝛼★,𝛽★ (𝑣) > 0. In particular,
for any 𝑣 ∈ R𝐷𝑚 such that 𝑣>𝑣 = 1, we have 𝑣>B𝛾𝑘 𝑣 > 0 and thus 𝜓𝑣 (𝑥) > 0 for any 𝑥 ∈ [0,∞). There-
fore, Ψ★(𝑣) = min𝑥∈[0,∞) 𝜓𝑣 (𝑥) > 0 exists and is a continuous function of the coefficients of 𝜓𝑣 , i.e., is
a continuous function of 𝑣. Since S1 = {𝑣 ∈ R𝐷𝑚 : 𝑣>𝑣 = 1} is a compact set, Ψ★ = min𝑣∈S1 Ψ★(𝑣) > 0
exists. Finally, we deduce

𝜆𝛾𝑘 = min
𝑣∈S1

𝑣>B𝛾𝑘 𝑣 ≥ Ψ★ℎ
(𝑘−1) (2𝑚+1) > 0. (B.27)

Since we assume 𝑓 ∈ Σ(𝑠, 𝐿), a straightforward consequence of Definition 2 is that for all 𝛽 ∈ (0, 𝑠],
there exists 𝐿̃𝑠,𝐿,𝛽 > 0 such that 𝑓 ∈ Σ(𝛽, 𝐿̃𝑠,𝐿,𝛽). Indeed, if 𝑓 ∈ Σ(𝑠, 𝐿), then there exists a polynomial
𝑞 =

∑
|𝛼 | ≤T𝑠U 𝑞𝛼𝜑𝛼 (·) ∈ PT𝑠U such that, for any 𝑢 ∈ V(1),������ 𝑓 (𝑡 + 𝑢) − ∑︁

|𝛼 | ≤T𝑠U

𝑞𝛼𝜑𝛼 (𝑢)

������ ≤ 𝐿‖𝑢‖𝑠∞.
This implies that 𝑓 ∈ Σ(𝛽, 𝐿̃𝑠,𝐿,𝛽) since������ 𝑓 (𝑡 + 𝑢) − ∑︁

|𝛼 | ≤T𝛽U

𝑞𝛼𝜑𝛼 (𝑢)

������ ≤ 𝐿‖𝑢‖𝑠∞ +
∑︁

T𝛽U< |𝛼 | ≤T𝑠U

|𝑞𝛼 | |𝜑𝛼 (𝑢) |

≤ ©­«𝐿 +
∑︁

T𝛽U< |𝛼 | ≤T𝑠U

|𝑞𝛼 |
ª®¬ ‖𝑢‖𝛽∞ =: 𝐿̃𝑠,𝐿,𝛽 ‖𝑢‖𝛽∞,

where the last inequality follows from the fact that, for all 𝑥 ∈ [0,1], the map 𝛽 ↦→ 𝑥𝛽 is decreasing
on (0,∞) (notice that 𝑢 ∈ V(1) ⊆ [−1,1]𝑑 implies 𝑥 = ‖𝑢‖∞ ∈ [0,1]). In particular, for our choice of
smoothness 𝛽 = 𝑠𝑘 in (4.13), we have 𝑓 ∈ Σ(𝑠𝑘 , 𝐿𝑘), where we write 𝐿𝑘 = 𝐿̃𝑠,𝐿,𝑠𝑘 for short. Therefore,
by Proposition 4.1, Proposition 4.2 and Lemma A.3, together with the fact that 𝑊ℎ = ℎ𝑘−1/(𝑘 + 1)
from (B.25) and 𝜆𝛾𝑘 ≥ Ψ★ℎ

(𝑘−1) (2𝑚+1) > 0 from (B.27), we have

𝑅𝑛 ( 𝑓𝛾𝑘 , 𝑓 ) ≤
𝑊ℎ

√︃
𝐷T𝑠𝑘U

𝜆𝛾𝑘
×

{
𝔏2

T𝑠𝑘U,𝑠𝑘 ,𝐿𝑘
ℎ2𝑠𝑘 +

𝔉𝑠𝑘 ,𝐿𝑘

𝑊ℎ𝑛ℎ
2

}1/2

.𝑠,𝐿,𝑘 ℎ
−2T𝑠𝑘U(𝑘−1) ×

{
𝔏2

T𝑠𝑘U,𝑠𝑘 ,𝐿𝑘
ℎ2𝑠𝑘 +

(𝑘 + 1)𝔉𝑠𝑘 ,𝐿𝑘

𝑛ℎ𝑘+1

}1/2

.

By taking ℎ = 𝑛−1/(2𝑠𝑘+𝑘+1) , the upper bound (4.14) follows. To be more transparent, our choice of
smoothness 𝑠𝑘 ∈ (0, 𝑠] in (4.13) is the one that minimizes the bound in the last equation if we were to
replace 𝑠𝑘 by a general smoothness parameter 𝛽 ∈ (0, 𝑠].
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To prove the lower bound, we follow the scheme of proofs laid out in Sections 2.2 and 2.3 of Tsybakov
(2009). Let (𝑠, 𝐿) ∈ (0,1] × (0,∞) and 𝑘 > 1 be given. Define the auxiliary function

𝜓̃(𝑥) = exp
(
− 1

1 − 𝑥2

)
1(−1,1) (𝑥), 𝑥 ∈ R,

together with the positive real constant

𝑏𝑘 =

∫ 1
0 𝑥𝑘 (1 − 𝑥)d𝑥∫ 1

0 𝜓̃(4𝑥 − 3)𝑥𝑘 (1 − 𝑥)d𝑥
.

Now, consider the function

𝜓𝑘 (𝑥) = {1 − 𝑏𝑘𝜓̃(4𝑥 − 3)}(1 − 𝑥)1[0,1] (𝑥).

This is a bounded function which satisfies 𝜓𝑘 (0) = 1, 𝜓𝑘 (1) = 0 and
∫ 1

0 𝑥𝑘𝜓𝑘 (𝑥)d𝑥 = 0. Moreover, 𝜓𝑘

is 𝑠-Hölder-continuous on [0,1] for some positive Lipschitz constant 𝐿𝑘,𝑠 > 0. We now consider, for
𝑢 = (𝑢𝑥 , 𝑢𝑦) ∈ D𝑘 ,

𝑓0 (𝑢) =
1D𝑘

(𝑢)
Leb(D𝑘)

and 𝑓1 (𝑢) = 𝑓0 (𝑢) + 2𝜌𝑛𝜓𝑘

(
𝑢𝑥

ℎ𝑛

)
1V(ℎ𝑛 ) (𝑢), (B.28)

where

ℎ𝑛 = 𝑛
−1/(2𝑠+𝑘+1) and 𝜌𝑛 = {𝐿/(2𝐿𝑘,𝑠)}ℎ𝑠𝑛. (B.29)

Observe that both 𝑓0 and 𝑓1 are density functions on D𝑘 , for 𝑛 large enough. This is obvious for the
function 𝑓0. Let us prove this assertion for 𝑓1. First, note that for 𝑢 ∈ D𝑘 ,

𝑓1 (𝑢) ≥
1

Leb(D𝑘)
− 2𝜌𝑛‖𝜓𝑘 ‖∞,

which is positive for large 𝑛. Using the change of variable 𝜉 = 𝑥/ℎ𝑛, it can also be seen that∫
D𝑘

𝑓1 (𝑢)d𝑢 = 1 + 2𝜌𝑛

∫ ℎ𝑛

0
𝜓𝑘

(
𝑥

ℎ𝑛

) (∫ 𝑥𝑘

0
1d𝑦

)
d𝑥

= 1 + 2ℎ𝑘+1
𝑛 𝜌𝑛

∫ 1

0
𝜉𝑘𝜓𝑘 (𝜉)d𝜉

= 1.

Using the methodology developed in Section 2.5 of Tsybakov (2009), the proof of the lower
bound (4.15) boils down to proving the following assertions:

1. { 𝑓0, 𝑓1} ⊆ Σ(𝑠, 𝐿).
2. | 𝑓1 (0) − 𝑓0 (0) | ≥ 2𝜌𝑛.
3. 𝑛𝐷KL ( 𝑓1, 𝑓0) ≤ 𝐴 for some positive real constant 𝐴 = 𝐴(𝑘, 𝑠, 𝐿) > 0, where 𝐷KL (·, ·) denotes the

Kullback-Leibler divergence between the associated probability measures.

To prove the first assertion, notice that the function

𝑢 = (𝑢𝑥 , 𝑢𝑦) ∈ D𝑘 ↦→ 2𝜌𝑛𝜓𝑘

(
𝑢𝑥

ℎ𝑛

)
1V(ℎ𝑛 ) (𝑢)
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belongs to Σ(𝑠, 𝐿), using the definitions of ℎ𝑛 and 𝜌𝑛 in (B.29) and the aforementioned fact that 𝜓𝑘

is 𝑠-Hölder-continuous on [0,1] for some Lipschitz constant 𝐿𝑘,𝑠 > 0. The second assertion is sat-
isfied because of (B.28) and the fact that 𝜓𝑘 (0) = 1. It remains to prove the third assertion. Since
𝑓1 (𝑢)/ 𝑓0 (𝑢) = 1 for all 𝑢 ∈ D𝑘 \V(ℎ𝑛), observe that

𝑛𝐷KL ( 𝑓1, 𝑓0) = 𝑛
∫
V(ℎ𝑛 )

𝑓1 (𝑢) log
{
𝑓1 (𝑢)
𝑓0 (𝑢)

}
d𝑢 = 𝐵1 + 𝐵2, (B.30)

where

𝐵1 =
𝑛

Leb(D𝑘)

∫
V(ℎ𝑛 )

log
{
𝑓1 (𝑢)
𝑓0 (𝑢)

}
d𝑢,

𝐵2 = 2𝑛𝜌𝑛

∫
V(ℎ𝑛 )

𝜓𝑘

(
𝑢𝑥

ℎ𝑛

)
log

{
𝑓1 (𝑢)
𝑓0 (𝑢)

}
d𝑢.

Since 𝜓𝑘 is bounded and 𝜌𝑛 tends to zero as 𝑛→∞, let 𝑛 be large enough so that����2𝜌𝑛Leb(D𝑘)𝜓𝑘

(
𝑢𝑥

ℎ𝑛

)���� ≤ 1
2
.

Now, using ∫
V(ℎ𝑛 )

𝜓𝑘

(
𝑢𝑥

ℎ𝑛

)
d𝑢 = 0 and | log(1 + 𝑥) − 𝑥 | ≤ 2𝑥2 for |𝑥 | ≤ 1/2,

we have

|𝐵1 | ≤
𝑛

Leb(D𝑘)

∫
V(ℎ𝑛 )

����log
{
𝑓1 (𝑢)
𝑓0 (𝑢)

}
− 2𝜌𝑛Leb(D𝑘)𝜓𝑘

(
𝑢𝑥

ℎ𝑛

)����d𝑢
≤ 8𝑛𝜌2

𝑛Leb(D𝑘)
∫
V(ℎ𝑛 )

𝜓2
𝑘

(
𝑢𝑥

ℎ𝑛

)
d𝑢

≤ 8𝑛𝜌2
𝑛ℎ

𝑘+1
𝑛 Leb(D𝑘)

∫ 1

0
𝜉𝑘𝜓2

𝑘 (𝜉)d𝜉.

(B.31)

Similarly, but instead using

| log(1 + 𝑥) | ≤ |𝑥 | for 𝑥 > 0,

we have

|𝐵2 | ≤ 2𝑛𝜌𝑛

∫
V(ℎ𝑛 )

𝜓𝑘

(
𝑢𝑥

ℎ𝑛

) ����log
{
𝑓1 (𝑢)
𝑓0 (𝑢)

}����d𝑢
≤ 4𝑛𝜌2

𝑛Leb(D𝑘)
∫
V(ℎ𝑛 )

𝜓2
𝑘

(
𝑢𝑥

ℎ𝑛

)
d𝑢

≤ 4𝑛𝜌2
𝑛ℎ

𝑘+1
𝑛 Leb(D𝑘)

∫ 1

0
𝜉𝑘𝜓2

𝑘 (𝜉)d𝜉.

(B.32)

Taking the above bounds (B.31) and (B.32) together in (B.30), we obtain

𝑛𝐷KL ( 𝑓1, 𝑓0) ≤ 12 Leb(D𝑘)
{∫ 1

0
𝜉𝑘𝜓2

𝑘 (𝜉)d𝜉
}
𝑛𝜌2

𝑛ℎ
𝑘+1
𝑛 .



38

Using the definition of 𝜌𝑛 and ℎ𝑛 in (B.29), the right-hand side of the last equation is easily seen to be
bounded, which proves the third point. Moreover, we have 𝜌𝑛 � 𝑛−𝑠/(2𝑠+𝑘+1) = 𝑛−𝜃𝑘 (𝑠) since 𝑠𝑘 = 𝑠 for
𝑠 ∈ (0,1]; see Item 1 of Remark 9. The lower bound (4.15) follows.

Proof of Theorem 4.7. Let (𝑠, 𝐿) ∈ (0,1] × (0,∞) and 𝑘 > 1 be given. Using (B.27) with the polyno-
mial degree set to 𝑚 = 0, there exists a positive real constant Ψ★ = Ψ★(𝑘) which depends on 𝑘 such
that, for any 𝛾 = (0, ℎ) ∈ Γ𝑛,

𝜆𝛾 ≥ Ψ★ℎ
𝑘−1 > 0. (B.33)

Hence, condition (4.4) is satisfied and Theorem 4.3 can be applied to obtain

𝑅𝑛 ( 𝑓 , 𝑓 ) ≤ min
𝛾∈Γ𝑛

[
5B𝛾 +

{
3 + 2

√︃
(𝛿 − 1)/‖ 𝑓 ‖V(𝜌)

}
U★
𝛾

]
+ O

{√︂
(log𝑛)𝑑

𝑛

}
. (B.34)

Now, similarly to the proof of Theorem 4.5, we define

ℓ0 =

⌊
1

2𝑠 + 𝑘 + 1
log

(
𝑛

log𝑛

)
+ log 𝜌

⌋
and 𝑚ℓ0 = 0.

In the following, consider 𝑛 large enough so that ℓ0 ≥ 1. This choice of ℓ0 implies

1 ≤ ℎℓ0

(
log𝑛
𝑛

)−1/(2𝑠+𝑘+1)
≤ 𝑒.

By (B.25), we know that

𝑊ℎ

𝜆𝛾
=
ℎ𝑘−1/(𝑘 + 1)

𝜆𝛾
≤ 1

(𝑘 + 1)Ψ★

. (B.35)

Therefore, with the notation 𝛾0 = (0, ℎℓ0 ), Proposition 4.1 yields

B𝛾0 = max
𝛾∈Γ𝑛
𝛾�𝛾0

��E {
𝑓𝛾 (𝑡)

}
− 𝑓 (𝑡)

�� ≤ max
𝛾∈Γ𝑛
𝛾�𝛾0

𝑊ℎ

√
𝐷0

𝜆𝛾
×𝔏0,𝑠,𝐿 ℎ

𝑠

≤ 𝐶0 (𝑠, 𝐿, 𝑘) max
ℎ≤ℎℓ0

ℎ𝑠 ≤ 𝐶0 (𝑠, 𝐿, 𝑘) 𝑒𝑠
(

log𝑛
𝑛

)𝑠/(2𝑠+𝑘+1)
,

(B.36)

where 𝐶0 (𝑠, 𝐿, 𝑘) > 0 is a positive real constant that depends on 𝑠, 𝐿 and 𝑘 . Following the same line of
argument as in the proof of Theorem 4.5, we obtain, using (B.33), (B.35) and Lemma A.3,

U★
𝛾0

≤ 𝐶1 (𝑠, 𝐿, 𝑘)
©­«
√√

| log ℎℓ0 |
𝑛ℎ𝑘+1

ℓ0

+
| log ℎℓ0 |
𝑛ℎ𝑘+1

ℓ0

+
√︄

1
𝑛ℎ𝑘+1

ℓ0

+ 1
𝑛ℎ𝑘+1

ℓ0

ª®¬
≤ 𝐶2 (𝑠, 𝐿, 𝑘)

(
log𝑛
𝑛

)𝑠/(2𝑠+𝑘+1)
,

(B.37)

where 𝐶1 (𝑠, 𝐿, 𝑘) and 𝐶2 (𝑠, 𝐿, 𝑘) are positive real constants that depend on 𝑠, 𝐿 and 𝑘 . By plugging
the bounds (B.36) and (B.37) back into (B.34), we get the upper bound (4.16).
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To prove that the collection 𝜙 = {𝜙𝑛 (𝑠, 𝐿) : (𝑠, 𝐿) ∈ (0,1] × (0,∞), 𝑛 ∈ N} is the ARC, we follow
the same line of argument as in the proof of the adaptive lower bound in Theorem 4.5, but the density
functions 𝑓0 ∈ Σ(𝑠′, 𝐿′) and 𝑓1 ∈ Σ(𝑠, 𝐿) are replaced by those defined in (B.28) together with the
bandwidth

ℎ =


1

{𝐿/(2𝐿𝑘,𝑠)}2Leb(D𝑘)
∫ 1

0 𝜉𝑘𝜓2
𝑘
(𝜉)d𝜉

× log𝑛𝜚

𝑛


1/(2𝑠+𝑘+1)

,

where 0 < 𝜚 < 𝑠′/(2𝑠′ + 𝑘 + 1) − 𝑠/(2𝑠 + 𝑘 + 1). To understand the choice of ℎ here, simply look at
(B.12) with 𝐴 = 𝐿/(2𝐿𝑘,𝑠) and use the inequality (1 + 𝑥) ≤ 𝑒𝑥 , which is valid for 𝑥 > 0, to obtain a
bound analogous to (B.24). This concludes the proof.
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