A new adaptive local polynomial density estimation procedure on complicated domains - Université Rennes 2
Article Dans Une Revue Bernoulli Année : 2023

A new adaptive local polynomial density estimation procedure on complicated domains

Résumé

This paper presents a novel approach for pointwise estimation of multivariate density functions on known domains of arbitrary dimensions using nonparametric local polynomial estimators. Our method is highly flexible, as it applies to both simple domains, such as open connected sets, and more complicated domains that are not star-shaped around the point of estimation. This enables us to handle domains with sharp concavities, holes, and local pinches, such as polynomial sectors. Additionally, we introduce a data-driven selection rule based on the general ideas of Goldenshluger and Lepski. Our results demonstrate that the local polynomial estimators are minimax under a $L^2$ risk across a wide range of H\"older-type functional classes. In the adaptive case, we provide oracle inequalities and explicitly determine the convergence rate of our statistical procedure. Simulations on polynomial sectors show that our oracle estimates outperform those of the most popular alternative method, found in the sparr package for the R software. Our statistical procedure is implemented in an online R package which is readily accessible.
Fichier principal
Vignette du fichier
hal_v1.pdf (741.37 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04177592 , version 1 (05-07-2024)

Identifiants

Citer

Karine Bertin, Nicolas Klutchnikoff, Frédéric Ouimet. A new adaptive local polynomial density estimation procedure on complicated domains. Bernoulli, In press. ⟨hal-04177592⟩
62 Consultations
16 Téléchargements

Altmetric

Partager

More