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Abstract— Land use and land cover (LULC) information is a 

fundamental component of environmental research relating to 

urban planning, agricultural sustainability, and natural hazards 

assessment. In particular, remote sensing technology has 

demonstrated a powerful capacity for LULC modeling with a 

corresponding increase in sensor number and type. Here, an 

advanced convolutional neural network (CNN) deep learning 

model was developed in combination with object-based image 

analysis (OBIA) to map LULC in Ain Témouchent coastal area, 

western Algeria, using Sentinel-2 and Pléiades imagery data. First, 

the CNN model was constructed based on convolution, hidden, and 

max pooling layers. The parameters of CNN architecture were 

optimized to improve the model for further processing. Then, 

based on high levels of CNN feature extraction, the OBIA was 

applied to classify the segmented objects, and detect the LULC 

features. Furthermore, machine learning methods, including 

random forest (RF) and support vector machines (SVM) were 

tested for comparison. The proposed method achieved a high 

overall accuracy (93.5%) using Pléiades imagery, revealing 

significant improvements compared to other machine learning 

techniques. Accordingly, it was concluded that the method 

proposed here is useful for LULC detection, and can be applied at 

larger scales in coastal areas. The derived maps can also inform 

regional and national-level decision making. 

 

Index Terms— coastal areas, convolutional neural networks 

(CNN), LULC mapping, machine learning, object-based image 

analysis (OBIA), remote sensing  

 

I. INTRODUCTION 

 

AND use and land cover (LULC) mapping in coastal 

areas is a fundamental determinant of environmental 

monitoring and management. Indeed, LULC data 

maintains several environmental applications, including urban 

planning, agricultural sustainability, and natural hazard 

assessments in coastal areas. Further, frequently updated LULC 

information at fine spatial scales are necessary for achieving 

various sustainable development goals [1]. In particular, coastal 

areas are important for their strategic geographic location and 
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natural ecosystems. Accordingly, LULC data in coastal cities 

are increasingly useful for monitoring human interference, such 

as increasing agricultural encroachment and urban expansion 

correlated to demographic growth. Over the past few decades, 

greater consideration has been given to remote sensing imagery 

applications for LULC detection [1]. Several satellites have 

been launched (e.g., Landsat, Sentinel, and SPOT) designed to 

monitor urban development, forests, agricultural, and natural 

hazards [2].  

 

Moreover, for high and very high spatial resolution (VHSR), 

remote sensing imagers are increasingly being used in LULC 

mapping analyses based on classification concepts using 

machine learning methods [3]. In recent decades, machine 

learning methods have been applied to remote sensing LULC 

classification tasks [4], [5], in particular, pixel- and object-

based image analysis (OBIA) methods [6], [7], particularly 

random forest (RF) [8]–[10], support vector machine (SVM) 

[11], [12], and artificial neural networks (ANNs) [13], [14]. As 

the most critical elements of image classification, the OBIA 

method is capable of identifying interspersed geographic 

features and objects [15]. Under OBIA, objects are extracted 

via segmentation processes considering spectral, textural, and 

contextual information of similar pixels [16]. Recently, OBIAs 

have been extensively applied to remote sensing assessments of 

LULC mapping, especially in coastal areas [17], [18]. Li et al. 

[19] investigated the performance of remote sensing data and 

machine learning methods when assessing anthropogenic 

LULC expansion in the Liaoning province coastal zone of 

China. Here, OBIA was used to perform LULC classification 

applied to Landsat TM/ETM +/OLI images from 1990 to 2014, 

and showed the potential to monitor anthropogenic LULC 

changes over the analysis period (as indicated via its good 

overall accuracy; OA). Consequently, even in coastal zones 

with low elevation, OBIA has been adopted for the accurate 

detection of LULC. Nandam and Patel  [20] employed a hybrid 
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method based on an SVM and spectral features to map LULC 

in the city of Surat, situated in the western coast of Gujarat, 

India, using Landsat 5-TM, 7-EMT and 8-OLI/TIRS series 

imagery data. In addition to the SVM learning algorithm chosen 

to perform the classification process, a set of spectral indices 

were extracted from the satellite images aiming to improve 

classification accuracy, including the normalized difference 

vegetation index (NDVI), and  the modified normalized 

difference water index (MNDWI). The SVM classifier was also 

compared to RF to evaluate the more effective algorithm for 

LULC classification in the coastal area, and the results revealed 

that although both algorithms were statistically significant,  

accuracy assessments showed that the SVM classifier was 

superior. Furthermore, the results of some spectral indices with 

SVM (e.g., MNDWI) have been validated across other testing 

sites (OA value ≤92%), showing that the proposed approach 

can be successfully implemented for LULC mapping of the 

coastal urban plains.  

 

However, despite the success of OBIA at accurately addressing 

LULC, the method remains relatively limited owing to several 

classification uncertainties related to irregular objects obtained 

by segmentation [21]. Additionally, OBIA accuracy can be 

compromised under a large variety of LULC types, especially 

in urban areas [22], resulting in inadequate feature extraction. 

Furthermore, OBIA based on machine learning classifiers using 

the conceived features, or a binary classifier typically do not 

consider deep level features extraction [23]. Deep learning 

models as a part of machine learning methods are designed to 

resolve various tasks in image processing [24], and their 

integration in remote sensing brings increased adaptability in 

object representation, with high levels of feature extraction 

from imagery data. Deep learning can increase the quantity of 

information extracted, thereby improving classification results 

for particular LULC tasks [25], [26]. Among deep learning 

algorithms, convolutional neural networks (CNNs) [27], [28] 

have been widely used in many classification tasks, particularly 

in LULC modelling and change analyses [26], [29].  

CNNs employ stacked convolution kernels to learn spectral and 

spatial information, thus improving identification of high level 

abstract features. Nevertheless, conventional CNN methods are 

characterized by a large number of layers, incurring large 

computational costs [30]. In addition, CNN classification 

methods are often performed at the pixel-level; thus, the 

extracted features can be confused due to the mixed spatial 

distribution of LULC types and spectral mixing [31]. 

Alternatively, OBIA methods utilize homogenous multi-pixel 

sets to classify objects; thus, it could be optimal to integrate 

CNN models with OBIA when performing the classification of 

segmented objects. This advanced method has been tested 

under various LULC mapping applications [32], coastal LULC 

change monitoring [33], and cropland classifications [34]. 

Furthermore, this integrated method has been shown to be 

capable of powerfully extracting high level image features, 

effectively defining LULC type boundaries, and increasing 

classification accuracy.  

Here, the primary objective of the study was to map LULC in 

Ain Témouchent coastal area of western Algeria using an 

OBIA–CNN method. The main remote sensing data employed 

in the proposed methodology were Pléiades VHSR images (2 

m resolution) and Sentinel-2A data (10 m). Assessments of the 

final LULC classifications were conducted in terms of OA. 

Final maps produced will be a useful tool in supporting regional 

and national decision making in and around the study area. 

Additionally, the following subobjectives were considered in 

the present study: 

- Employing a simple CNN model with the fewest possible 

layers integrated in eCognition software for limiting 

computational demand,  

- Optimizing CNN hyperparameters to improve 

classification accuracy,  

- Comparing the proposed method with  machine learning 

methods (RF and SVM algorithms),  

-       And, evaluating the contribution of each dataset used in 

terms of the final LULC classification accuracy. 

 

II. METHODS 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Ain Témouchent study area 

A. Study area 

The area of interest is situated in northwest Algeria, at the 

crossroads between three major cities; Oran, Sidi Bel Abbès, 

and Tlemcen (Fig. 1). The area includes the Mediterranean 

coastal region of Ain Témouchent and the city center; 

moreover, it incorporates the Sennane watershed, which crosses 

the urban city (total area of 84 km²) as its control point 

downstream of the city. The city is surrounded by mountainous 

areas with an average altitude of ~500 m. Influenced by the 

Mediterranean climate, the Ain Témouchent region is 

characterized by a warm summer and temperate winter. 

Additionally, the winds from the northwest and southeast bring 

little moisture to the area, as they cross the Moroccan reliefs 

from the south. The study area is characterized by 

heterogeneous LULC due to its confinement to a narrow valley, 

while being surrounded by vineyards and agriculture arranged 

on a high fertility basaltic soil. The most dominant LULC 

categories in the region are built-up areas, forests, and 

agricultural land, with the latter two being located primarily in 

the rural area. The region is characterized by its higher 
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agricultural production and vineyard activity, totaling 25% of 

all national production. These agricultural activities are 

accompanied not only by the service sector in line with its 

geographical location, but by significant university community 

growth as well. The vegetation cover consists of forest massifs, 

but has been replaced by mountain farms in several places. The 

urban city is featured by its layout and French style architecture. 

Today, the city continues to experience great urban 

development to the detriment of farmland and vineyards. Ain 

Témouchent is also characterized by rapid population growth. 

The current estimated population of the city in 2014 is ~97,812, 

with a growth rate of +1.38%·yr-1 from 1987 to 1998, and 

+2.52% from 1998 to 2008 according to the National Statistics 

Office. Accordingly, the diversity of LULC categories in the 

study area provides the opportunity for evaluating the ability of 

the proposed method to extract LULC objects. Furthermore, the 

town of Ain Témouchent is highly exposed to floods risks [32], 

which requires up-to-date LULC information, in particular, in 

some flood prone areas. Hence, final LULC will be exploited 

as part of the strategy of local and national authorities to plan 

flood prone zones and combat illegal construction in the parts 

where the flood risk is high. 

B. Remote sensing data and preprocessing 

Two different data sources were acquired to produce LULC 

maps. First, Pléiades VHSR imagery are derived from a dual-

optical satellite (Pléiades 1A) and 2012 (Pléiades 1 B) designed 

for earth observation available to order.  . The Pléiades1A and 

Pléiades 1B were launched on a Soyuz ST from Europe’s space 

port in Kourou, French Guiana, on December 17, 2011 and on 

December 2, 2012, respectively. Accordingly, two Pléiades 

datasets were required to cover the entire study area, and were 

acquired from the 1A platform on October 17, 2020. All images 

were obtained under good cloud cover conditions (0%), while 

the data included panchromatic images and four multispectral 

channels (red, green, blue, and near-infrared—NIR), at a spatial 

resolution of 2 m. The acquisition properties of Pléiades are 

shown in Table 1. 

The second image was derived from Sentinel-2A data, as 

acquired freely through the Sentinel-Hub 

(https://scihub.copernicus.eu/). The Sentinel-2 image was 

acquired on the same date (October 17, 2020), allowing for a 

comparison of the results from both the proposed methods. 

These images have 13 spectral bands. Accordingly, the high 

spatial, spectral, and temporal resolution of Sentinel satellites 

are appropriate for LULC monitoring programs, given its high 

revisit frequency (10 days for a single Sentinel-2 satellite, 5 

days for the combined constellation). Table 2 provided 

additional acquisition properties of Sentinel-2 imagery. 

 

Pléiades images were mosaicked to obtain a single image; 

whereas Sentinel-2A data were already geometrically corrected 

at the time of acquisition. Sentinel-2 bands with spatial 

resolution different to 10 m were resampled to 10 m using the 

Sentinel applications platform (SNAP v.5.0), as the 

classification process requires the same size input images. An 

overview of the Pléiades and Sentinel-2A imagery in the Ain 

Témouchent study area is showed in Fig. 2 

 

TABLE I 

PLÉIADES SPECIFICATIONS 

 

Data type Band Wavelength (nm) 
Spatial 

Resolution (m) 

Pleiades 1A 

Band 1(blue) 430–550 nm 

2 

Band 2 

(green) 
490–610 nm 

Band 3 (red) 600–720 nm 

Band 4 (NIR) 750–950 nm 

 

TABLE 2 

SENTINEL-2A SPECIFICATIONS 

Data Band Wavelength (nm) 
Spatial 

Resolution (m) 

Sentinel 2A 

2 492.4 

10 
3 559.8 

4 664.6 

8 832.8 

5 704.1 

20 

6 740.5 

7 782.8 

8a 864.7 

11 1613.7 

12 2202.4 

1 442.7 

60 9 945.1 

10 1373.5 

 

 

Fig. 2. Overview of the Pléiades (left) and Sentinel-2A (right) 

images. 
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Fig. 3.  Flowchart of the developed methods 

 

C. Methods 

The workflow of the proposed experiments consisted of the 

following steps: (1) Training and test samples generation and 

spectral feature extraction; (2) LULC classification via the 

proposed integrated method of CNN deep modeling with 

OBIA, (3) LULC classification using pixel-based and OBIA 

methods (RF and SVM were the machine learning classifiers 

employed), and (4) Accuracy assessment of LULC maps. Fig 3 

shows the flowchart of the developed methods.  

 

1. Sample generation for training and validation classification 

process 

 

LULC categories were identified using visual analysis and 

interpretation of the Pléiades VHSR image, producing 10 

predominant classes: forests, cultivated land, greenhouses, 

built-up areas, barren land, follow land, uncultivated land, 

roads, stadiums, and water. Since the spatial resolution of the 

Sentinel-2A image is lower than that of the Pléiades data, six 

corresponding LULC categories were identified: water, 

cultivated land, uncultivated land, barren land, built-up area, 

and forests. 

 

Sample generation was split into two categories: training and 

test samples. The generation provided two vector datasets using 

Quantum Geographic Information System (QGIS) (version: 

3.16). The training vector was applied during the classification 

process; whereas the test vector was used in both accuracy 

assessments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Classification process 

a) Classification of the CNN deep model integrated with the 

OBIA approach 

 

CNN architecture 

 

CNN is a deep learning model technique designed for image 

classification, and inspired by the architecture of the biological 

multilayer neural networks, which  allows for the construction 

of high-level semantic features from low-level given features 

[31], [35]. A representative CNN architecture consists of 

sequential layers (e.g., convolutional, pooling, and fully 

connected layers) and interconnected output layers using 

nonlinear operations [23]. Two important characteristics are 

considered in any CNN architecture: local connectivity 

designed to simplify the CNN by limiting the number of 

connected neurons, and shared weights responsible for reducing 

and simplifying model parameters by considering the same 

connected weights between different neurons in a given layer. 

[30]. Similarly, through the convolutional layers, the CNN 

model can extract features based on multiple convolutional 

operations in an input image, thereby transforming a local 

receptive field of the connected region on the input data into a 

pixel of the next layer. Furthermore, the pooling layer is 

important in any CNN model which merges similar features 

into one, capable of reducing feature map dimensions [36], 

[37]. Average and max pooling are typically the most applied 

layers in CNNs. Additionally, each CNN layer is produced by 

small sample patches of a certain size scanned across the input 

image to capture different feature characteristics.   

  

In CNN model design, it is essential to find the appropriate 

architecture capable of meeting the research needs. Because, 

the CNN process for deriving output layers is constructed 

across several stages producing a set of feature maps [38], the 

training of any CNN model allows for the optimal combination 

of model parameters. Thus, the optimization of CNN hyper-

parameters (e.g., sample patch size, hidden layers, and learning 

rate) is an essential step for obtaining a performant model. 
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Here, the CNN architecture was created in Trimble eCognition 

Developer v.10. The main layers characterizing CNN structural 

design implemented were the hidden, convolution, pooling, and 

fully-connected layers; whereas the process consisted of three 

main steps: (1) creation of sample patches, (2) generation of and 

training the model, and (3) model application. ECognition is 

advantageous for its integrative ability to perform CNN 

classifications with OBIA. Detailed CNN architecture using 

Pléiades and Sentinel-2A input data are shown in Figs. 4 and 5, 

respectively. Further, two optimal CNN models were adopted 

for both Pléiades and Sentinel-2A input imagery, in accordance 

with previous studies [31], [35], [39].  

 

 

 

Fig. 4. CNN architecture of Pléiades image. 

 

 

Fig. 5. CNN architecture of Sentinel-2A image. 

 

 

 

Labeled sample patch generation for the CNN deep model 

 

Labeled sample patches were generated from the entire input 

image. Sample patch sizes are considered as one of the most 

critical parameters in optimal CNN architecture [40]; thus, 

different sizes were considered for both images: 8 × 8, 10 × 10, 

16 × 16, 20 × 20, 32 × 32, and 64 × 64 pixels. In addition, 

through a cross validation method, the sample patch size of 16 

× 16 was attributed for Pléiades data, and 32 × 32 for Sentinel-

2A data. Further, sample count and image bands are required 

parameters that should be reviewed; thus, all spectral bands 

were used, and a set of 10,000 labeled sample patch were 

generated for each model in both images.   

 

Creating and training the CNN deep model 

 

Based on integrated algorithms of the CNN creation 

architecture in eCognition, the model was derived using all 

spectral bands of data for the input, and generated LULC 

classes for the output. The number of hidden layers, feature 

maps, kernel sizes, and max pooling layers are user-defined 

parameters; thus, for Pléiades data, two hidden layers were built 

for the CNN model after a cross validation execution, and the 

assessment of the CNN output accuracy results.  A max pooling 

was applied in the study here with an even number size. The 

goal was to decrease the number of units by preserving only the 

maximum response of multiple units in the hidden layer [41]. 

Similarly, after a cross validation method, a convolution was 

implemented for each layer with a kernel size value of 3 × 3 for 

the first hidden layer, and 5 × 5 for the second layer; however, 

in the case of CNN model creation using the Sentinel-2A image, 

only one hidden layer was created and applied with max 

pooling, convolution layer, and a kernel size of 7 × 7, based on 

CNN accuracy results. 

 

Next, the CNN model was trained using the labeled sample 

patches and parameter configurations, and the model weights 

were adjusted using backpropagation. Notably, parameter 

adjustment is important in this step. The learning rate  is an 

important parameter which controls the learning step size for 

each training iteration; thus, inappropriate rates can lead to 

slower divergence or convergence [31]. Accordingly, values of 

0.0006, 0.0009, 0.001, 0.005, and 0.01 were tested, with lower 

values slowing the learning process by finding local minima or 

suboptimal weights; whereas higher values speed up the rate at 

an increased risk of missing the optimal minima [41]. 

Ultimately, the accuracy results indicated a rate of 0.0006 most 

accurately represented the amount of weight adjustment during 

statistical gradient descent optimization. Training steps and 

samples were set as 5000 and 50, respectively, for both input 

data. 

 

Application CNN deep model 

 

Lastly, fully connected layers (heatmaps) were generated 

after applying the created CNN model, where heatmap layers 

corresponded to the LULC categories. The heatmaps had a unit 

for each category predicted by CNN, where two possibilities 

existed: a value close to 1 indicated a higher likelihood of the 

category, while a value near 0 indicated a lower likelihood. For 

the Pléiades image, the 10 produced heatmaps layers were 

equivalent to the 10 identified land cover categories; whereas 

six heatmaps were generated for the Sentinel-2A image, six 

heatmaps layers were produced as output.  

 

OBIA classification 

 

As the CNN model was performed at the pixel level, the 

classification of the integrated model with OBIA consisted of 

applying the latter approach to classify the entire input image at 

the object-level. Here, the heatmap was utilized as the input 

features to perform the OBIA. The Sentinel-2A and Pléiades 

data were transformed into segmented images through a 

multiresolution algorithm [42]. Multiresolution models are 

region-growing models, and assemble pixels to provide objects 

through iteration, while maintaining the homogeneous 

conditions defined by the user [34]. Based on trial-and-error, 

different scale parameter values from both sets of input data 
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were tested to obtain the highest possible classification 

accuracy. Through the cross validation of Pléiades and 

Sentinel-2A images, values of 15 and 5 were selected for the 

scale parameters, respectively. The other homogeneous criteria 

(shape and compactness) were set to default values of 0.1 and 

0.5, respectively. 

 

b) Methods based on machine learning algorithms for 

comparison 

 

  Two machine learning algorithms were chosen for the 

comparison with current proposed method: RF and SVM. These 

algorithms have been frequently applied in remote sensing 

analyses, are recognized for their powerful features and often 

considered the default techniques for LULC modelling [11], 

[12], [43].  

 

RF [38]  is a powerful machine learning algorithm with 

excellent LULC mapping capabilities using different source 

data [39]. RF is a nonparametric model that creates multiple 

decision trees, with each tree constructed by assigning the most 

popular class to the input images. In LULC classification, the 

RF classifier has shown to be consistent and relatively efficient, 

requiring few user-imposed parameters, and producing an OA 

that is often consistent or better than other algorithms (e.g., 

conventional decision trees and maximum likelihood) [44]. For 

training the RF classifier, two important parameters must be 

assigned: the maximum number of trees (Ntree), and the 

number of features should be selected for each tree (Mtry). 

Together, these two parameters have  a high impact on the 

classification performance [45], [46].  

 

Alternatively, the SVM is a non-parametric algorithm for 

classification and regression image analyses [39]. It is often 

used in LULC mapping tasks, as it is a discriminant classifier 

that minimizes inaccuracy of images by identifying solutions in 

a hyperplane that transforms data into predefined classes. In 

instances where the data features are inseparable, SVM has a 

kernel function that projects the data into higher-order functions 

[47]. Several kernel features are used in the SVM model: the 

Gaussian radial basis function (RBF), in addition to 

polynomial, linear, and sigmoid functions. Here, an RBF kernel 

was applied for SVM classification. The C and γ parameters are 

the two fundamental components controlling the performance 

of SVM when the RBF is considered as the kernel function [48], 

[49]. Indeed, the parameter C is used to control the magnitude 

Penalties for regularizing misclassified training dataset and 

plays an important role in affecting accuracy and/or the 

generalization ability of the algorithm [12]. The γ parameter 

gamma effect is a control Kernel widths, as well, in SVM 

classification based on RBF kernel, the effect of γ is similar to 

C because if a high When assigning value, the model is over-

fitted and the generalization is not good [49]. 

A large dataset was tested to optimize and choose the 

parameter values for the two algorithms, with the aim of 

creating the most efficient classification model. For RF 

algorithm, values of Ntree= 50,100,200,300,400, and 500 of 

were tested by maintaining the Mtry at default value. Further 

the best determinate value of Ntree was set as default value a 

set of values of Ntry were experienced  ranged between 2 and 

30 (2, 5, 10, 15, 20, 25, and 30). Further, the same process was 

followed considering SVM algorithm, values ranged for 1 to 20 

(C =1, 2, 4, 5, 8, 10, 15, 20), and 0.5 to 5 (γ= 0.5, 1, 2, 3, 4, 5) 

for both C parameter and Gamma respectively. The 

hyperparameter values derived for the optimization process 

using cross validation method are shown in Table 3. It should 

be reported that the pixel-based method was performed in Orfeo 

Toolbox, and OBIA was performed in eCognition.  

 

TABLE 3 

 TUNING MACHINE LEARNING PARAMETERS  

 
Data Method Classifiers Hyperparameters 

 

Pléiades 

image 

OBIA 

RF Ntree: 300 

Mtry: 10 

SVM C: 1 
Gamma: 0.5 

Pixel 

RF Ntree: 100 

Mtry: 10 

SVM C: 1 
Gamma: 0.5 

 

Sentinel-

2A 

image 

OBIA 

RF Ntree: 200 

Mtry: 10 

SVM C: 2 
Gamma: 0.1 

Pixel 

RF Ntree: 100 

Mtry: 2 

SVM C: 2 
Gamma: 1 

 

3) Accuracy assessment 

 

Accuracy assessments aim to validate results and confirm the 

stability of each applied classifier in the proposed methodology. 

The obtained classification accuracies were assessed using OA, 

user accuracy (UA), producer accuracy (PA), and the kappa 

index (K) derived from a confusion matrix, as these are the most 

common metrics used for evaluating LULC classification 

accuracy [50]. OA represents the overall performance of the 

applied method by calculating the ratio of the total number of 

correctly classified pixels to the total number of pixels for 

terrestrial investigation across all categories. PA was calculated 

by dividing the number of correctly classified pixels in each 

LULC class by the total number of pixels in that row and 

column, providing individual class precision, whereas UA 

represents the probability that a pixel assigned to a given class 

is part of that class [29]. 

III. RESULTS 

Here, the results of accuracy assessments for all performed 

methods are presented, in addition to final land cover maps for 

each method from three subset regions within the study area. 

To improve visual analyses, these three classification subsets 

were extracted, and included the Ain Témouchent center as an 

urban area, in addition to the coastal area. 

 

A. Statistical accuracy assessment 

Pléiades data 
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Table 4 shows the results of achieved accuracy assessment 

among the applied methods. The proposed OBIA-based CNN 

method yielded an OA of 93.5%, and a kappa of 0.91 for the 10 

LULC categories in the study area. The OA achieved by the 

proposed CNN method thereby exhibited significant 

improvement compared to other tested methods. In addition, 

RF-OBIA and SVM-OBIA achieved OAs of 91.8% and 88.2%, 

as well as kappas of 0.91 and 0.84, respectively; whereas pixel-

based RF and SVM achieved OAs of 84.8% and 72.9%, as well 

as kappas of 0.83 and 0.70, respectively. Based on the CNN 

deep model, water and roads maintained the highest UAs—

99.3% and 97.7%, respectively. Further, the majority of classes 

held UA values >93%, including greenhouses, built-up areas, 

uncultivated lands, and barren lands. Cultivated lands were 

considered the poorest classes in terms of UA (average ~80.8%) 

their overlapping pixel reflectance values and confusion with 

oter classes; however, each were detected with UA of 68% and 

90.8%, respectively. Additionally, some confusion was 

observed between roads and built-up areas, which were 

classified with UAs of 97.7% and 95.1%, respectively. 

 

The OA achieved with respect to methods based on RF/SVM 

algorithms was generally satisfactory, with the results 

demonstrating that OBIA RF and SVM algorithms 

outperformed pixel-based RF and SVM, producing a 7% 

difference in OA (84.8–91.8%). The optimal results provided 

by the OBIA methods was achieved with RF, which had an OA 

of 91.8%, and kappa of 0.85. Alternatively, SVM reached an 

OA of 88.2%, and kappa of 0.84. Further, the same trends were 

observed when comparing pixel-based algorithms, where RF 

achieved an OA of 84.8% and kappa of 0.83, while SVM 

achieved an OA of 72.9% and kappa of 0.70. The LULC classes 

most efficiently detected by RF were water and stadiums, with 

UAs of 99.6% and 99.3%, respectively (Table 4). In contrast, 

cultivated and barren land were the most poorly classified, with 

UAs of 68.03% and 67.4%, respectively. In pixel-based RF, 

water and barren land were well classified, with UAs of 100% 

and 95.9%, respectively; however, built-up areas and forest 

were the least accurate in terms of UA (67.9% and 77.5%, 

respectively). Furthermore, confusion remained between built-

up areas and roads, in addition to forest and cultivated lands, 

due to pixel reflectance.  

TABLE 4. ACCURACY ASSESSMENT OF LULC 

CLASSIFICATION FROM PLÉIADES IMAGES. 

 

Sentinel-2A data 

 

The results obtained for Sentinel-2A data were tiered (Table 

5). Additionally, the proposed CNN deep model with OBIA, 

and other tested methods based on RF/SVM achieved 

satisfactory results, with OAs ranging from 77.4–91.0%. 

Furthermore, OBIA based on RF produced superior results, 

with an OA of 91% compared to the CNN model with 83.4%. 

This can likely be explained by the effects of spatial resolution 

in the classification process. Moreover, in both methods, water 

and built-up areas were well classified, with UAs of 100% and 

99.9% for the CNN based OBIA, and 98.9% and 98.0% for RF-

OBIA, notably similar to that of forests, which were also well 

classified under this method (98.9%). For the pixel-based 

method, water and built-up were well detected, with UAs of 

98.1 % and 73.0% for RF. For both classifiers, forests were the 

least accurately classified, with UA< 35% for RF and< 47% . 

for SVM.  

 

With respect to machine learning methods, the results achieved 

with RF were vastly superior to those with SVM for both OBIA 

and pixel-based methods. RF-OBIA and SVM-OBIA achieved 

91% and 72%, respectively, while RF-Pixel and SVM-Pixel 

achieved 80.1% and 77.4%; thus, RF outperformed SVM 

regardless of method used. 

 

TABLE 5. ACCURACY ASSESSMENT OF LULC 

CLASSIFICATION FROM SENTINEL-2A IMAGE. 

 

 

The achieved results for both data types were compared. In 

terms of OA, Pléiades data provided better results than 

Sentinel-2A under the tested methods, including the proposed 

OBIA CNN method, with a difference of 2.5%. Similarly, 

machine learning based on RF and SVM methods achieved 

better results, with differences of 0.8% and 16.2%, respectively. 

For the pixel-based method, Pléiades data outperformed 

Land cover 

type 

Metrics 

(%) 

RF_ 

Pixel 

SVM_ 

Pixel 

RF_ 

OBIA 

SVM_ 

OBIA 

OB_ 

CNN 

Water 
PA 98.5 97.7 97.4 95.1 99.3 

UA 100 97.7 99.6 99.1 99.4 

Cultivated land 
PA 91.1 73.0 92.4 89.5 91.2 

UA 85.6 88.9 68.03 68.3 70.9 

Greenhouses 
PA 84.3 91.2 91.9 92.9 89.5 

UA 89.7 47.1 92.7 73.3 94.3 

Built-Up 
PA 75.2 82.5 84.7 80.8 96.2 

UA 67.9 59.7 98.7 87.2 95.1 

Fallow 
PA 79.6 45.8 92.01 86.91 93.9 

UA 95.6 78.4 96.2 96.1 95.2 

Barren land 
PA 92.4 81.3 88.7 90.5 89.2 

UA 95.9 28.5 67.4 53.2 94.3 

Roads 
PA 88.7 73.6 88.4 86.6 91.3 

UA 86.8 87.4 94.4 92.7 97.7 

Uncultivated 

land 

PA 88.3 69.30 84.7 79.6 90.8 

UA 87.4 88.1 98.7 98.8 97.6 

Forest 
PA 71.8 72.8 76.0 82.2 93.1 

UA 77.5 45.5 92.0 94.3 90.8 

Stadiums 
PA 95.2 97.7 94.0 92.2 49.9 

UA 95.4 100 97.3 88.9 96.1 

Land cover type Metrics 
RF_ 

Pixel 

SVM_ 

Pixel 

RF_ 

OBIA 

SVM_ 

OBIA 

OB_ 

CNN 

Water 
PA 97.2 95.5 96.5 98.3 100 

UA 98.1 100 98.9 96.7 100 

Barren lands 
PA 60.1 66.2 98.7 63.3 99.6 

UA 64;0 84.0 94.8 90.8 82.6 

Cultivated land 
PA 71.1 70.1 98.0 47.9 82.6 

UA 50.5 99 85.0 75.1 84.1 

Built-Up 
PA 84.0 78.0 89.0 83.6 65.5 

UA 73.0 75.0 98.0 67.4 99.9 

Uncultivated land 
PA 72.0 98.9 98.9 84.4 83.3 

UA 46.4 47.0 96.6 64.0 77.7 

Forest 
PA 52.2 99.0 96.6 86.2 74.7 

UA 32.2 46.0 98.9 26.6 63.3 
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Sentinel-2A by 4.7% for RF, and 4.5% for SVM. The obtained 

OA and kappa among all methods are shown in Table 6. 

 

 

TABLE 6. OVERALL ACCURACY (OA) AND KAPPA 

WITH PLÉIADES AND SENTINEL-2A IMAGERY. 

 

       

 B. LULC mapping from Pléiades and Sentinel-2 data 

Figures 6–8 present the classification results of the methods for 

the Pléiades image. Through the visual examination of the land 

cover maps, the 10 LULC categories were detected in all 

methods, though a number of differences were observed. Thus, 

OBIA-based CNN was the most suitable method for detection 

and delineation of LULC categorical boundaries. In particular, 

built-up areas, cultivated land, roads, and stadiums were well 

delineated. Regarding the other methods, some confusion was 

observed in the derived maps between roads and built-up areas, 

as well as forest and cultivated land. 

 

 

Notably, pixel-based RF and SVM presented the worst 

classification. Built-up areas were well detected in CNN 

compared to all other methods, as confirmed in the coastal area 

(Fig. 8), where CNN accurately delineated the port from barren 

lands (i.e., beaches). In contrast, the coastal buildings were 

misclassified with both the OBIA and pixel-based analysis 

methods. Similar results were observed for cultivated land 

(Figs. 7 and 8), as CNN had the capacity to distinguish between 

cultivated lands and forests, while the majority of agricultural 

areas were also well delineated. Comparing the classifiers for 

each machine learning method, a slight difference in 

classification was detected between RF and SVM. In general, 

there was confusion in distinguishing between roads and 

buildings in final LULC maps. In the SVM-pixel map, forests 

were misclassified, being confused with cultivated and fallow 

lands. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 9–11 present the classification results of the different 

methods provided for the Sentinel-2A image. The six categories 

were detected for all methods, though there were a number of 

remarkable differences in the final LULC maps. For the 

proposed CNN based on OBIA, buildings, uncultivated land, 

and cultivated lands were well defined. CNN classification 

displayed similar results to RF-OBIA (Fig. 9). Similarly, 

uncultivated land was well identified, albeit with limited 

confusion. In SVM learning methods, confusion between 

cultivated land and forests, as well as uncultivated land and 

built-up areas were observed, indicating poor classification (Fig. 

11). Roads, included in built-up areas, were also well delineated 

with the majority of methods. Comparisons of the final maps 

provided from Sentinel-2A data and Pléiades data showed that 

LULC maps based on the latter were of higher quality in terms 

of delineating each LULC category due to the effects of 

enhanced spatial resolution during the classification process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Image data Model OA (%) kappa 

Pléiades 

RF_Pixel 84.8 0.83 

SVM_Pixel 72.9 0.70 

RF_OBIA 91.8 0.85 

SVM_OBIA 88.2 0.84 

OB_CNN 93.5 0.91 

Sentinel-2A 

RF_Pixel 80.1 0.71 

SVM_Pixel 77.4 0.69 

RF_OBIA 91.0 0.87 

SVM_OBIA 72.0 0.70 

OB_CNN 83.4 0.80 
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Fig. 6. Pléiades LULC map of Subset 1: Ain Témouchent center. 

center. 

Fig. 7. Pléiades LULC map of Subset 2: Ain Témouchent 

center. 

center. 

Fig. 8. Pléiades LULC map of Subset 3: Ain Témouchent 

coastal area. 
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Fig. 9. Sentinel-2A LULC map of Subset 1: Ain Témouchent center. 

center. 

center. 

Fig. 11. Sentinel-2A LULC map of Subset 3: Ain 

Témouchent coastal area. 

center. 

center. 

center. 

Fig. 10. Sentinel-2A LULC map of Subset 2: Ain 

Témouchent center. 

center. 

center. 

center. 

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2022.3185185

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



11 

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 

 

IV. DISCUSSION 

 

Although the application of machine learning methods in 

LULC mapping, in particular OBIA-based classification, has 

achieved good results in several studies [15], [16], these 

methods suffer from problems related to misclassifications, due 

in part to the heterogeneity of LULC classes, and the similarity 

between their spectral signatures. Accordingly, an extraction 

technique with a higher level of features is required. In this 

regard, the development of CNN techniques has recently 

increased, and demonstrated a high capability for LULC 

mapping. Several analyses based on CNN models have 

addressed LULC detection, especially in coastal areas [51], 

[52]. Experimental results of these studies demonstrated a high 

potential in LULC detection, and accuracy improvements in 

classification > 90%.  In spite of the high performance of 

traditional CNN models in LULC classification, analyses are 

conducted at the pixel-level, which can result in 

misclassifications due to the spatial distribution of classes, in 

addition to the large number of CNN layers created to perform 

the classification. CNN-based OBIA methods can address these 

limitations by classifying images via segmented objects; thus, 

features generated automatically with a high level extraction 

through a CNN model.   

 

In the present study, a CNN deep learning model combined with 

an OBIA method was used to extract LULC features in Ain 

Témouchent, Algeria. The proposed methodology integrated 

CNN for in features extraction with OBIA classification. The 

methodology proposed was performed on two distinct sources 

of remote sensing imagery: Sentinel-2A and Pléiades data, 

acquired on the same day in October 2020. In addition to the 

deep CNN method integrated with OBIA, two further methods 

(OBIA pixel-based analysis) based on machine learning 

algorithms (RF/SVM) were tested on both datasets as well, to 

compare the capabilities of the proposed CNN-based methods. 

Furthermore, an optimized CNN model and OBIA was used to 

improve classification accuracy, and produce LULC maps with 

higher quality interpretation. For the Pléiades image, two 

primary layers (convolutions and max-pooling layers) were 

adopted as the CNN architecture, with a 16 × 16 input sample 

patch size. The CNN parameters (e.g., sample patch size, 

hidden layers, and learning rate) were optimized based on cross 

validation methods to obtain the final architecture with optimal 

accuracy. Similarly, the same process was applied to Sentinel-

2A imagery; whereas a single hidden layer with convolution, 

and max pooling layers were incorporated, along with an input 

sample patch size of 32 × 32.  Notably, the CNN parameters, 

especially sample patch size, significantly affected the accuracy 

of classification performance. For Sentinel-2A, one hidden 

layer was generated to achieve a positive result. Contrary to 

Pléiades data, the optimal OA results were obtained by 

generating two hidden layers. Similarly, according to prior 

experience, sample patch size assigned to the classification 

process also exerted a significant influence. Indeed, a number 

of the tested sizes produced inaccurate classifications, while 

others produced the optimal LULC maps with respect to OA. 

Furthermore, Fig. 12 shows the results of the tested patch size 

values from both datasets used to generate the CNN model. 

 

 

Fig. 12. Effect of sample patch size of CNN on OA. 

 

 

The graphs evaluated the influence of patch size on OA. For the 

Pléiades data, large (64 × 64) and small patch sizes (8 × 8) 

produced inaccurate classifications; whereas similar patterns 

were observed for Sentinel-2A data. Moreover, the generation 

of a CNN model with a large patch size requires greater degrees 

computational power, material, and time. Overall, the work 

here highlighted the benefits of a simple CNN architecture 

compared to other studies that have used multiple layers and 

large patch sizes [28], [51], [57]. For example, Zhao et al. [53] 

assessed the effects of CNN architecture depth on deep 

extraction learning., training CNN models with 1–5 different 

depths for evaluating the corresponding impacts. Results 

confirmed that the deeper CNN architectures produced the 

highest classification accuracies (≤ 95%); however, generating 

these models requires significantly more time and 

computational power.  Comparing these findings to those 

revealed here, similarly accurate results (OA ≥ 93%) were 

obtained by via a simplistic CNN architecture with two hidden 

layers. Moreover, our results is conformed to Ghorbanzadeh et 

al. [35] results, who also found that the size of input sample 

patches for CNN models could significantly affect 

classification. Here, through an optimization method, the size 

of the optimal sample patch was set to 20 × 20 in order to 

perform the CNN-based classification combined with OBIA, 

with the findings confirming that in addition to CNN capacity, 

OBIA through (multiresolution segmentation) also improved 

the classification, ultimately improving extraction.  

 

Furthermore, despite the ability of CNN architecture selection 

and OBIA input features to improve classification, it is essential 

to consider the influence of scale parameters on segmentation 

processes. As mentioned in Fig. 13, OA values were affected 

by scale parameter (as also seen in [52], [53]). Here, the shape 

and compactness parameters were set to default values of 0.1 

and 0.5, respectively. This key parameter was that controlling 

the size of the segmented objects, thereby adjusting the desired 

level of detail; consequently, tuning this parameter is an 

essential step to obtaining optimal classification results. Here, 

15 was the optimal value of the scale parameter in CNN-based 
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OBIA methods and the other machine learning methods for 

both input images.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 

13. Effect of scale parameter on OA.  

 

 

Hence, the CNN combined with OBIA significantly improved 

OA classification by 1.7% over what RF-OBIA achieved when 

assessing the Pléiades VHR image. The results here thus 

demonstrated the effectiveness of CNN as a classifier, and its 

potential to identify the boundaries of LULC categories. 

Consequently, CNN is very useful for LULC classification, in 

particular, over large-scale environments. For the Sentinel-2A 

image, the competition was remarkable between CNN and RF 

performed with OBIA, while the RF classifier obtained the best 

results, with an OA > 7% stronger. Therefore, for the machine 

learning methods, results of the classification affirmed that 

OBIA outperformed the pixel-based analyses for both datasets, 

as has been seen in earlier LULC studies [54], [55]. Conversely, 

when comparing machine learning classifiers (RF and SVM), 

both achieved good results, with OAs > 70%.  

 

Considering the LULC maps (Figs 6-11), the proposed methods 

here produced the most accurate LULC features in the study 

areas, where nearly all LULC classes were well distinguished. 

Furthermore, for LULC classification based on the Pléiades 

image (Figs. 6–8), the proposed method allowed for the 

detection of all desired LULC classes water, cultivated land, 

greenhouses, built-up area, fallow, uncultivated land, roads, 

barren land, forests, and stadiums. Moreover, classification 

boundaries were well delineated, with buildings being 

particularly well distinguished from roads. Similarly, despite 

the similarity in pixel reflectance between forests and cultivated 

lands, both classes were well extracted. For Sentinel-2A image 

analyses (Figs. 9–11), LULC categories water, cultivated land, 

uncultivated lands, built-up areas, barren lands, and forests 

were also well identified using the proposed and machine 

learning methods. Notably, the derived LULC maps for the 

proposed method and RF based OBIA algorithms were   much 

more similar. Thus, due to various misclassification, CNN 

based OBIA was shown to be the most suitable for LULC class 

detection. Regarding spatial resolution, LULC maps provided 

from Pléiades were had a higher level of spatial detail,           

 

Despite the superior accuracy derived by CNNs combined with 

OBIA when compared to machine learning methods alone, the 

latter methods, especially those based on the RF classifier, were 

competitive, and achieved successful results in LULC 

classification. As mentioned in several previous studies [56], 

[57], RF performed better than SVM regardless of the satellite 

data used. For the Pléiades data, RF outperformed SVM by 

11.9% with the pixel-based method, and by 3.6% using OBIA. 

Similarly, for Sentinel-2A data, the RF classification produced 

an improvement in OA > 2.7% for the pixel-based analysis, > 

10% for OBIA. Accordingly, RF parameters affected the 

training of the classification. Moreover, the optimization of RF 

parameters, primarily the total number of trees, can enhance the 

classification results. According to the cross-validation method, 

a large number of trees (50,500) were tested here, and OAs were 

evaluated for each value. Figure 14 illustrates the impacts of the 

RF tree number on the OA for the classification from OBIA and 

pixel-based methods, where the hyperparameter’s strong 

influence on classification accuracy can be confirmed. 

 

 

 

Fig. 14.  Effects of maximum number of trees in RF classifier 

on OA of classification. A: effects on Sentinel-2A data. B: 

effects on Pléiades dat. 

 

 

In fact, as part of automated LULC mapping methods, this 

study demonstrates the potential of CNN for LULC 
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classification provided for object segmentation from high and 

very high-resolution data. Although, deep learning models 

require multiple data samples with high quality for algorithm 

optimization. LULC classes are better identified by using only 

semantics rather than just images, which is reflected in accuracy 

scores and qualitative analysis. A principal component in CNNs 

is the availability of large training data which allow to 

successfully training of the model.  Consequently, performance 

is investigated with some perspectives, in particular; examines 

the overall performance of the LULC classifications, and 

discusses the per class accuracies.  It also discusses qualitative 

analysis and clarifies how semantics can be used as a source of 

information in the LULC classification. In particular, the LULC 

classes related to artificial structures, such as the built-up class, 

have higher classification accuracy. Globally, our proposed 

deep learning method successfully discriminates, classifies 

very similar classes based on spectral cues, and generates 

highly accurate LULC maps. Despite the superiority of the 

proposed model, we find that our deep learning model typically 

requires more training samples than traditional machine 

learning methods 

 

V. CONCLUSIONS 

 

The study here assessed and mapped LULC in the Ain 

Témouchent coastal area situated in western Algeria. A CNN 

deep learning model developed in combination with OBIA was 

applied, and machine learning methods based on RF and SVM 

classifiers were tested. The proposed methods were conducted 

on two different remote sensing data types, Pléiades VHSR and 

Sentinel-2A high spatial resolution data, with the aim of testing 

the contribution and potential of each dataset in the extraction 

of LULC features. The parameters of CNN architecture, in 

particular the size of sample patches and CNN layers (including 

hidden, convolution, and max pooling layers) were improved to 

produce optimal model architecture, and enhance classification 

accuracy. The proposed CNN deep model integrated with 

OBIA showed significant improvements in LULC mapping 

compared to other machine learning classifiers, achieving an 

OA and kappa of 93.5% and 0.91 for Pléiades data, 

respectively, and 83.4% and 0.80 for Sentinel-2A data. In 

addition, despite the capability of CNN models in high level 

LULC extraction, the OBIA method should be improved by 

optimization of the segmentation parameters. Notably, the scale 

parameter in multiresolution segmentation is key to controlling 

the size of the segmented objects, and should be optimized for 

improving OBIA classification.  

 

Furthermore, results of machine learning methods confirmed 

that OBIA outperformed pixel-based analysis, and that RF was 

more stable than SVM for both datasets. In addition, given the 

effect of spatial resolution, the proposed CNN method 

performed better with Pléiades data, showing significant 

improvements of LULC maps regardless of the tested methods. 

Furthermore, the method offers higher accuracies, and can be 

applied over larger scales, with different remote sensing data 

sources. 

The results here revealed that it is possible to map LULC in 

coastal areas using machine learning algorithms applied to data 

with different spatial resolutions. Accordingly, the final LULC 

maps are different, and the level of LULC classes detected was 

dependent upon the chosen resolution. Despite the lower 

resolution of Sentinel-2 data, visibly usable maps were still 

produced. Hence, for more detailed analyses that require fine-

scale LULC details, using VHSR products is recommended in 

heterogeneous coastal areas. The final maps produced here can 

serve as a database for other applications (e.g., assessments of 

flooding vulnerability, which require detailed LULC 

information during the modeling process), and can be 

considered a helpful tool in supporting regional and national-

level decision making concerning LULC in and around Ain 

Témouchent coastal area. 
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