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Summary

This paper discusses machine learning techniques for the prediction of Common
European Framework of Reference (CEFR) levels in a learner corpus. We sum-
marise the CAp 2018 Machine Learning (ML) competition, a classification task of
the six CEFR levels, which maps linguistic competence in a foreign language onto
six reference levels. The goal of this competition was to produce a machine learning
system to predict learners’ competence levels from written productions comprising
between 20 and 300 words and a set of characteristics computed for each text ex-
tracted from the French component of the EFCAMDAT data (Geertzen et al., 2013).
Together with the description of the competition, we provide an analysis of the re-
sults and methods proposed by the participants and discuss the benefits of this kind
of competition for the learner corpus research (LCR) community. The main findings
address the methods used and lexical bias introduced by the task.

Keywords

natural language processing (NLP), machine learning, learners of English, EF-
CAMDAT corpus, CEFR, language proficiency.

International Journal of Learner Corpus Research. Volume nn – n◦ x/2019, pages 00 à 00



Machine Learning for learner English 1

1. Introduction

Learner corpus research (LCR) has increasingly taken into account advances in nat-
ural language processing (NLP) (Callies & Paquot, 2015; Granger et al., 2007;
Meurers, 2015; Wisniewski, 2017), such as native language identification (Jarvis
& Paquot, 2015), grammatical error correction (Leacock et al., 2010) and auto-
mated scoring (Higgins et al., 2015). Recent progress in machine learning (ML)
techniques (see for instance Goldberg, 2017) suggests that this type of approach
can be used to solve many challenges in analyzing learner corpus data. However,
the question of choosing the best-suited machine learning methods for develop-
ing dedicated techniques to learner level identification remains open. To this end,
a learner data challenge was organised in a machine learning conference to com-
pare participants’ skills and algorithms. This data challenge, sponsored by Nvidia,
took place in Rouen during CAp2018 1, the yearly French conference on machine
learning that gathers specialists in artificial intelligence. The aim was to encourage
cross-fertilisation between linguists and specialists of Artificial Intelligence (AI)
and Natural Language Processing.

The domains of AI and NLP have a long history in data challenges, or shared
tasks, especially in the areas of corpus annotation (Magerman, 1995), semantic
labelling such as named entity recognition (Sang & De Meulder, 2003), opinion
mining, sentiment analysis (Liu, 2012) etc. The challenges usually consist in auto-
matically predicting specific labels for a given task (such as annotation). A training
set includes the labels to be predicted whilst a test set does not. The winning tech-
nique is the one which predicts the labels of the test set with the best accuracy
(see Paroubek et al., 2007; Nissim et al., 2017, and included references). Many
workshops have been organised as satellite events of computational linguistics con-
ferences such as the Conference on Computational Natural Language Learning
(CoNNL). One of the most popular tasks is the analysis of syntactic and semantic
dependencies in multiple languages 2 with a specific data format, known as CoNNL-
U 3. Shared tasks have been instrumental in opening avenues for empirical research
using NLP techniques.

We intend to show the benefits of similar undertakings to learner corpus re-
search. Section 2 contextualises the data challenges in NLP and second language
acquisition (SLA). Section 3 introduces the aims of the competition. Section 4 de-
scribes the features that were included in the data sets and how the data was split

1. cap2018.litislab.fr
2. ufal.mff.cuni.cz/conll2009-st/task-description.html
3. universaldependencies.org/format.html

cap2018.litislab.fr
ufal.mff.cuni.cz/conll2009-st/task-description.html
universaldependencies.org/format.html
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into a training set and a test set. Section 5 describes the cost matrix that was used to
rank submissions. Section 6 reports the methods and results, discusses the lessons
that can be drawn from this competition for corpus linguists and suggests some next
steps for this line of research. We conclude in Section 7.

2. Learner corpora in shared tasks

In second language acquisition, several types of shared tasks have relied on learner
corpora. The first type corresponds to learner corpora exploited in native lan-
guage identification tasks. Malmasi et al. (2017) report the latest competition at
the BEA12 workshop which included two data sets made up of speech and written
data from learners of English. The task was to automatically identify the native
language of the learners. Performance results were reported in terms of precision,
recall and F1-Score. These measures are valued within a [0,1] range and indicate
accuracy, F1-Score being the mean of recall and precision measures. Best results
reported a 0.88 F1-score, which indicates a high level of accuracy.

The second type of shared tasks have focused on building error detection sys-
tems. A number of these tasks have been organized in recent years. The HOO
Pilot Shared tasks initiated the move with the detection of all error types in a corpus
of research article fragments from the ACL Anthology (Dale & Kilgarriff, 2011).
The 2012 edition focused on preposition and determiner error detection (Dale et al.,
2012). The CoNLL-2014 shared task on grammatical error correction (Ng et al.,
2014) made use of the NUCLE corpus (Dahlmeier et al., 2013) and extended its
2013 edition by targeting all error types in the NUCLE corpus. As a satellite
workshop to the 40th Annual Conference of the Cognitive Science Society (CogSci
2018), the Duolingo shared task on second language acquisition modeling (SLAM)
(Settles et al., 2018; Tetreault et al., 2018) was proposed and has already resulted
in several papers written for the competition (e.g. Rich et al., 2018; Hopman et al.,
2018). The Duolingo 4 data set was built with extractions from the Duolingo app 5,
retracing initial learner productions. The data set was complex, using learner in-
put for three tasks (reverse translation and reverse translation with provided words,
including distractors and translation of heard phrases) and three data sets from dif-
ferent learner groups were created for the competition: Learners of English (with
Spanish as L1), learners of Spanish (with English as L1), and learners of French
(with English as L1). Participants had to identify errors from a longitudinal sam-

4. sharedtask.duolingo.com
5. www.duolingo.com

sharedtask.duolingo.com
www.duolingo.com
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pling of learner productions presented in the CONNL format. Results at CONNL-
2014 showed 0.3733 F0.5 while HOO 2012 showed 0.4147 F1-score. The most
recent Duolingo shared task reported results of 0.561 F1-score. These results show
that multi-class (such as error categories) prediction tasks still have a large error
margin (around 50%) and will benefit from more research in error-related features
and classification methods.

The third type of shared tasks with learner data concerns automatic essay scor-
ing, as in the 2019 Building Educational Applications workshop (Yannakoudakis
et al., 2019) and Automatic Scoring Systems including Automatic Essay Scoring
(AES) tasks. The first AES for open-ended questions emerged from Page’s PEG-
IA system (Page, 1968) and focused on native English. More recently, Automatic
Scoring Systems have focused on learner language data (Shermis et al., 2010; Cush-
ing Weigle, 2010), which has raised the need to use learner corpora to train models
(Barker et al., 2015; Higgins et al., 2015).

To the best of our knowledge, few Automatic Scoring Systems shared tasks
have made use of learner corpora for the purpose of scoring. The two editions of
the Spoken CALL shared Task (Baur et al., 2017, 2018) focused on the distinction
between linguistically correct and incorrect short open-ended responses in Swiss
German learners’ speech. Despite the scarcity of shared tasks of this third type,
many studies have been conducted on automatic level scoring in learner English
(Attali & Burstein, 2006; Yannakoudakis et al., 2011) and also in other languages
such as Estonian (Vajjala & Loo, 2014) and Swedish (Volodina et al., 2016). All
papers report on different methods that use n-grams, errors, syntactic and lexical
features to rank learner texts. They may focus on scoring specific language aspects
such as text coherence or global proficiency levels of the learners. Some of these
approaches are deployed in commercial products 6.

In terms of Automatic Scoring Systems performance, depending on the types
of scores (continuous or categorical values), several types of evaluation metrics
were used ranging from correlation coefficients 7 to precision, recall and F1-Score.
These differences in test scores make comparisons difficult. In the case of numeric
scores (Cushing Weigle, 2010) compared the e-rater system’s scores with human
scores and concluded to the same level of correlation (r=0.81 between e-rater and
two humans). Yannakoudakis et al. (2011) reported a Spearman’s correlation co-

6. For instance, see the IntelligentEssayAssessorTM developed at Pearson Knowledge Technologies; the
IntelliMetricTMEssayScoringSystem developed by Vantage Learning and e-rater R© developed by Educational
Testing Service (ETS).

7. Correlation coefficients are within the [-1;+1] interval, with 0 indicating no association and 1 perfect
association. Polarity signs indicate the direction of the association (same or opposite)
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efficient of 0.773 for their Support Vector Machine (SVM) model. In the case of
categorical scores. Vajjala’s Common Europeran Framework of Reference (CEFR)
classification approach resulted in a 0.74 F1-Score and (Volodina et al., 2016) re-
ported a 0.66 F1-Score. Both studies showed higher levels of accuracy than error
detection tasks due to their inherent limited number of categories to predict.

So far, learner essay scoring has been the result of independent projects which
did not share the same data. As a result, methods and results were not easily com-
parable. The CAp 2018 "My tailor is rich" shared task intended to fill this gap
by providing a single unique data set with identical features and CEFR classified
writings.

3. Aims of the competition

The CEFR maps linguistic competence in a foreign language onto six reference
levels to be shared by European countries: A1, A2, B1, B2, C1 and C2. Level
A1 denotes the lowest proficiency and level C2 the highest. As the framework
is common to all European languages, it describes competencies in terms of func-
tional can-do statements regarding the set of communicative goals learners ought
to be able to achieve at each level, rather than linguistic features per se (Council of
Europe, 2001a). The CEFR also provides a level of granularity in terms of writing
or comprehension skills. (Council of Europe, 2001b, 23).

It is clear that any teaching curriculum working with CEFR descriptors will
aim for a variety of tasks that can meet the various communicative goals and can-do
statements of each CEFR level. As can be observed, the descriptors are not lan-
guage specific. A critical question then for learners, teachers and assessors is which
linguistic features or grammatical knowledge is necessary for meeting the func-
tional goals of CEFR descriptors. Various language-specific projects have sought
to identify the properties of the learner grammars or interlanguage underpinning
each CEFR level 8. The English Profile project has taken a learner corpus approach,
aiming to identify a set of linguistic features that are characteristic of each level
and hence assumed as “criterial features” for each CEFR level (Hawkins & Buttery,
2010; Hawkins & Filipović, 2012; O’Keeffe & Mark, 2017).

The properties of these levels have been investigated more thoroughly by the
learner corpus research community, including the investigation of errors as "criterial

8. see the 2018 Companion volume with new descriptors (Council of Eu-
rope, 2018) and the Reference level descriptions, retrievable from https:
//www.coe.int/en/web/common-european-framework-reference-languages/
reference-level-descriptions-rlds-developed-so-far

https://www.coe.int/en/web/common-european-framework-reference-languages/reference-level-descriptions-rlds-developed-so-far
https://www.coe.int/en/web/common-european-framework-reference-languages/reference-level-descriptions-rlds-developed-so-far
https://www.coe.int/en/web/common-european-framework-reference-languages/reference-level-descriptions-rlds-developed-so-far
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features" (Thewissen, 2015). Both theory-driven and data-driven approaches have
been adopted. Hawkins & Filipović (2012) and O’Keeffe & Mark (2017) illustrate
hypothesis-driven investigations while Alexopoulou et al. (2013) involve a data-
driven approach in which the most discriminative features of a system classifying
B1 exams are interpreted as criterial.

Following up on this background, in May 2018, the CAp 2018 conference
hosted a machine learning competition. Within an NLP/AI perspective, the CEFR
levels represent six classes to predict 9 and a potential proxy for language profi-
ciency 10. The goal of this competition was to produce, by means of machine learn-
ing methods, a system to predict the level of the written productions, each compris-
ing between 20 and 300 words, and a set of characteristics (see Section 4) computed
from each text.

4. Data set description

The data were derived from extracts of EFCAMDAT, an open access corpus devel-
oped by linguists at Cambridge University in collaboration with Education First
(EF), an international school of English as a foreign language (Geertzen et al.,
2013). The corpus 11 consists of written assignments submitted to Englishtown,
the online school of EF Education First, summing 1,180,309 individual scripts by
174,743 learners. The curriculum of Englishtown 12 covers all proficiency levels,
from CEFR A1 to C2 organised along 16 EF teaching levels. Each EF level con-
tains 8 teaching units ending with an open-ended writing task, yielding 128 distinct
writing assignments. Writing tasks cover a variety of communicative functions, e.g.
writing a complaint, contributing to a blog discussion, completing a movie story,
making a job application, writing a brochure for a product etc. Such tasks cover
a variety of genres, e.g. descriptive, argumentative, narrative. Writing tasks and
types are broadly aligned with the teaching goals at different proficiency levels,
and, therefore, tasks in higher levels are more variable and potentially more com-

9. Compared with NLP tasks, not so many gold standards (Paroubek et al., 2007) are available to the
Learner Corpus Research Community.

10. By simulating human decision on the basis of observable evidence, the task is a formalization of human
decision. It could be argued that this kind of competitions using human judgments on learner productions could
be interpreted as a way to flesh out the CEFR levels with real observations in terms of regularly observed errors
for given levels.

11. Learning and test data were selected and manipulated independently of the participation of the Cam-
bridge and Education First research teams. It can be accessed at corpus.mml.cam.ac.uk/efcamdat2/
public_html/.

12. The curriculum description corresponds to an earlier version of the teaching materials withdrawn in 2013
and no longer in use.

corpus.mml.cam.ac.uk/efcamdat2/public_html/
corpus.mml.cam.ac.uk/efcamdat2/public_html/
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plex, aiming to elicit longer texts than tasks in lower levels, in line with the CEFR
descriptors reviewed in the previous section. Thus, texts vary in length from 20-
40 words (lower levels) to 150-180 words (higher levels). Information on learner
nationality is used as a proxy to estimate L1 background.

Regarding the process of CEFR alignment, Englishtown learners are allocated
to a teaching level by EFL teachers, after a placement test. Learners are always allo-
cated at the first level of a stage, that is, levels 1, 4, 7 and 10. As the data come from
a real life learning environment, the data are more variable and potentially dynamic
as learners progress from lesson to lesson and as individual performance might vary
from lesson to lesson. In addition, more variation is expected in the ‘placement’
levels 1, 4, 7 and 10. EFCAMDAT then differs in this respect from corpora involv-
ing examination scripts, e.g. Cambridge Learner Corpus or Merlin Corpus (Boyd
et al., 2014). Nevertheless, (Murakami, 2014, 80) presents a comparison between
EFCAMDAT and the Cambridge Learner Corpus and concludes in favour of a good
CEFR correspondence between the two corpora, at least for A and B CEFR levels.

To appreciate the variety of task prompts within proficiency levels, consider
the EFCAMDAT tasks In Figures 13 1, 2 and 3. All tasks are from the same level
but differ in their demands; 6.2 asks learners to create a profile, 6.3 asks learners to
provide a set of instructions while 6.5 is a narrative.

Figure 1 – Writing task from lesson 2 of Level 6

13. A full list of task prompts can be found at https://corpus.mml.cam.ac.uk/efcamdat2/public_
html/

 https://corpus.mml.cam.ac.uk/efcamdat2/public_html/
 https://corpus.mml.cam.ac.uk/efcamdat2/public_html/


Machine Learning for learner English 7

Figure 2 – Writing task from lesson 3 of Level 6

Figure 3 – Writing task from lesson 5 of Level 6

The variety of task prompts is an important feature of the EFCAMDAT cor-
pus. As machine learning systems are very dependent on the training data, the
EFCAMDAT task prompts are bound to have an impact on the systems trained on
this data set. It is, therefore, possible that systems trained on this test set might
show diminished performance on classifying writings elicited through a different
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set of task prompts. At the same time, the logic of the EFCAMDAT tasks is not
uncharacteristic of task-based language learning systems.

For machine learning, a data set is needed. A data set can be described as
a table with one observation per line and features as columns. In our case, the
data were hybrid, including a column for texts (one learner production for a given
task), a column for the assigned CEFR level and other columns for the numerical
values produced by linguistic tools (lexical and readability metrics). Extracting the
French component of the ECFAMDAT resulted in a proposed data set that included
40,966 text examples written by French L1 learners only and a set of associated
characteristics including:

- lexical complexity metrics,
- readability metrics,
- the prediction variable (the linguistic competence of the person).

4.1. Features provided

Fifty-nine feature variables are available. The first (called fulltext) is a text value:
The full text produced by the person to be assessed (with an average length of
70 words). The other 58 variables are metrics calculated from the text using X.
Lu’s Lexical Complexity Analyzer (LCA) (Lu, 2014) and the koRpus R package
(Michalke, 2017). They describe the degree of vocabulary diversity and the com-
plexity of the text. Among these metrics we find: The number of sentences, words,
letters, and syllables, the Type-Token ratio (and derived measures), readability mea-
sures calculated from the correlation between the number of words and length of
words used, and lexical sophistication, which measures the richness of the lexicon
using reference inventories. A precise description of the characteristics is available
on the website 14 and in Appendix A.

Classification of learners’ texts for lexical proficiency is usually based on fea-
tures such as vocabulary size (Crossley et al., 2011). Recent papers have also incor-
porated readability metrics (Lissón, 2017). We have not used syntactic metrics (Lu,
2010) but we have taken lexical sophistication into account. Table 9 in Appendix B
gives a detailed description of each metric. Lexical sophistication gives information
on how unusual the words used by a given learner are. Sophistication is defined as
the percentage of low-frequency words belonging to specific morpho-syntactic cat-
egories, i.e. verbs, nouns, adjectives and adverbs. Frequency thresholds in lexicons

14. cap2018.litislab.fr/competition_annexes_EN.pdf

cap2018.litislab.fr/competition_annexes_EN.pdf
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Table 1 – Conversion between the levels estimated by EFCAMDAT and the CEFR
associated with the size of each class in the training set.

EFCAMDAT CEFR sample number
1-3 A1 11,361
4-6 A2 7,688
7-9 B1 5,383

10-12 B2 2,337
13-15 C1 491

16 C2 50

indicate whether they belong to diverse classes. Finally lemmatised versions of
words are taken into account.

Features computed with the R package koRpus (Michalke, 2017) include in-
dices of lexical sophistication (e.g. type-token ratio, HD-D/vocd-D, MTLD) and
readability metrics (Flesch-kincaid, SMOG, LIX, Dale-Chall). Readability corre-
sponds to the ease with which a reader can process a written text. It often corre-
sponds to grades in the US school system (primary school up to 5th grade, middle
school until 8th grade, and high school up to 12th grade). Some details are given in
Appendix 2.

4.2. Training labels

The classes which were to be predicted correspond to the six reference levels of
the CEFR. The learner data shared on the EFCAMDAT corpus are of 16 different
levels. Table 1 shows the conversion between the levels estimated by EFCAMDAT
and the CEFR, and the number of each class in the training set.

From a machine learning perspective, this is an unbalanced ordinal classifica-
tion problem - that is a multiclass classification problem with ranked target classes.
"Unbalanced" means that the number of examples for each label is far from equal.
"Multi-class" implies that more than one boundary has to be designed to separate
the data into six classes (as opposed to a binary classification, which is easier). The
ranking nature of the problem is due to the fact that the labels are ordered, assuming
A1 < A2 < B1 < B2 < C1 < C2.
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4.3. Competition landmarks

The competition took place over two months during the spring of 2018, starting on
March 28th and ending on May 28th. During the first month, only the training data
was made available. The test data, without the labels, was released on the 8th of
May.

The whole data set of 40,966 samples was randomly split into a training set
and test set, containing two thirds (27,310) and one third (13,656) of the samples,
respectively. Splitting was conducted so that both data sets have the same proportion
by class. The labels (i.e. the proficiency levels) of the test set were hidden to the
participants and known only by the organisers.

5. Evaluation

The list of metrics suitable for comparing the performances of different ordinal clas-
sification models is limited, and all the more so as we were dealing with unbalanced
data. Indeed in this case, a classifier’s accuracy measured in the proportion of cor-
rect classification is inadequate, since it will tend to remove small class sizes from
prediction and will not take into account the natural ordering of the class: Predict-
ing A2 instead of A1 is far less severe that predicting C2 instead of A1. To measure
the ordinal association between two quantities, the Kendall rank correlation coef-
ficient can be used, but it still fails to address the unbalanced issue. Furthermore,
additional prior knowledge is available about the targeted classes. Because many
universities require foreign students to achieve B2 for admission, we considered
that there is some institutional interest in properly labelling B2. As a result, we
deemed that more weight should be given to labelling errors between B1 and B2. A
way to tackle these issues is to incorporate costs in decision-making defining fixed
and unequal misclassification costs between classes representing prior knowledge
about the nature of the problem. Formulaically, the performance measure E used
for the competition reads:

E =
100

n

6∑
i=1

6∑
j=1

CijNij, [1]

where N is the confusion matrix of general term Nij counting the number of items
of class i classified as j, n the size of the test set and C the cost matrix defined in
Table 2 15.

15. This section can be used as a how-to guide for setting up a usable data set in a data challenge. To foster
communications between communities, we have provided a companion webpage on this github 16 with the code



Machine Learning for learner English 11

Table 2 – The classification cost matrix C used to evaluate the models.

Real
Predicted A1 A2 B1 B2 C1 C2

A1 0 1 2 3 4 6
A2 1 0 1 4 5 8
B1 3 2 0 3 5 8
B2 10 7 5 0 2 7
C1 20 16 12 4 0 8
C2 44 38 32 19 13 0

The cost matrix has been designed to address two different issues: the un-
balanced nature of the classes and the distance between classes related with their
ordered nature. The unbalanced nature of the classes is tackled by setting a high
cost to the miss-classification of the under-represented classes. To this end, follow-
ing Lin et al. (2017), costs are set to be proportional to the class entropy e = − log p
where p is the prior probability of each class. Their values are given in Table 3. We
can see that based on the entropy vector e, the cost of an error when the true class
is C2 is more than seven times higher than the one when the true class is A1. To
model the distances between classes, we introduced in Table 3 a weight matrix W
of general term Wij = |i − j| + tij where the correction term tij ∈ {0, 1, 2} put
more emphasis on the distances between classes B1 and B2 on one hand and classes
C1 and C2 on the other.

Therefore to cope with the twofold purpose of dealing with unbalanced classes
and distance between classes, the cost matrix C has been defined as:

C = diag(e)W,

where diag(e) is a diagonal matrix with vector e on the diagonal. By construction
it is not symmetric. Indeed, for instance when considering classes A1 and C2 with
respectively 11,361 and 50 learners, the error at predicting C2 when the true label
is A1 is more frequent and less severe than making a mistake the other way round
by predicting A1 instead of C2. In that case, C1,5 = 6 and C5,1 = 44. Note that the
perfect classification corresponds to the diagonal of zeros and would correspond to
a penalty score of zero.

used for the evaluation (in R, Python and Matlab). It shows the details of how the matrix cost is calculated for
each submission.
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Table 3 – Prior knowledge used to build the cost matrix C, that is the initial classi-
fication weight matrix W , the prior probability vector p and the associated entropy
e for each class

Real
Estimated A1 A2 B1 B2 C1 C2 p e

A1 0 1 2 4 5 7 0.42 0.86
A2 1 0 1 3 4 6 0.28 1.28
B1 2 1 0 2 3 5 0.19 1.64
B2 4 3 2 0 1 3 0.08 2.47
C1 5 4 3 1 0 2 0.02 4.03
C2 7 6 5 3 2 0 0.002 6.31

6. Results and discussion

6.1. The leader board

The competition received 37 submissions from 14 different teams, with an average
slightly above 2.5 submissions per team and a maximum of six. Table 4 shows the
final leader board of all participating teams together with their affiliation and their
best performance measure E (Equation [1]) computed on the test set.

No ties were observed. We provide details of the winning submission including
confusion matrices in Table 8. The best score is 3.49 17. This corresponds to an
error rate of 1.41 % (only 193 misclassified examples out of 13,656 test examples),
an average precision of 0.93, an average recall of 0.94 and an average F1-score of
0.94. For C2, the most difficult class to predict, the precision is 0.76, the recall
is 0.73 and the F1-score is 0.75. With such results, we can effectively consider
that the winning team has solved the problem of automatically predicting learners’
competence levels as formulated in the competition goals.

To assess the relevance of the final ranking according to E, we proposed to
statistically test the significance of their differences. A way to do so is by using
McNemar’s test for paired proportions, forcing us to reconsider the problem as a
binary classification task. To this end, we chose to compare the different solutions
in their ability to classify learners above and below B1, since B2 is often used as the
threshold for foreign students to be admitted to universities. We therefore applied

17. Note that the E performance measure is relevant for ranking the proposed methods but, unlike the error
rate, it is not open to any interpretation.
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Table 4 – Final leader board of the CAp 2018 Competition.
Rank Team Affiliation Score E

1. Balikasg Université de Grenoble 3.49
2. Terislepacom Telecom Paris Tech 7.29
3. ICSI Université de Technologie de Compiègne 8.60
4. Caoutchouc Université de Technologie de Compiègne 9.45
5. ACNK Université de Technologie de Compiègne 10.43
6. reciTAL team Université Pierre et Marie Curie 11.21
7. TAU Université de Technologie de Compiègne 12.82
8. Capitaine-Ad-Hoc IRIT, Toulouse 14.17
9. Chamlia LIP6, Paris 17.52
10. Haralambous + Lenca IMT Atlantique, Brest 17.98
11. MB Telecom Paris Tech 31.67
12. Rufino Instituto Caro y Cuervo, Bogota, Colombia 33.42
13. Team UTC Université de Technologie de Compiègne 40.79
14. Limsi LIMSI, Orsay 41.52

Edwards’ corrected version of McNemar’s test on the best four competitors 18. The
resulting p-values were 3.69e-07 (Balikasg vs. Terislepacom), 0.005 (Terislepacom
vs. ICSI), and 0.411 (ICSI vs. Caoutchouc). These p-values suggest that the re-
sults obtained by the first three competitors, namely Balikasg, Terislepacom and
ICSI are significantly different while those of ICSI and Caoutchouc (competitors
respectively ranked 3 and 4) are not according to this test. In other words, the first
two competitors are undeniably ahead of the competition but there is a clear win-
ner as the team’s system performs best at distinguishing learners above and below
B1. As to competitors three and four, even though their final scores were differ-
ent, their proposed classification of learners above and below B1 is not significantly
different.

6.2. Analysis of the different proposed solutions

As usual in modern machine learning, most technical implementations consist of
a pipeline of different processes including feature engineering, data representation
and classification. Feature engineering describes the kind of features taken into ac-
count in the analysis. We have classified the features as ’G’ for the given features

18. https://fr.mathworks.com/matlabcentral/fileexchange/189-discrim

https://fr.mathworks.com/matlabcentral/fileexchange/189-discrim
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(lexical sophistication, lexical complexity, etc.), ’O’ for other linguistic indicators,
’W’ for words, ’C’ for characters and ’S’ for syntactic features. ’Data represen-
tation’ refers to how words were considered (raw words, bag of words or word
embeddings). Classification sums up the machine learning algorithm, method or
family of methods adopted for classification. A summary of the choices proposed
by the different teams is given in Table 5. As is often the case in machine learning
challenges, the performances of a method cannot be dissociated from the context of
its use. Thus, during this competition, boosting has been used both by teams having
obtained the best results and by teams having obtained the worst results. Boosting
is a machine learning ensemble approach that combines many ”weak” classifica-
tion methods (weak in the sense of low prediction accuracy) to produce a powerful
”committee”, yielding to a ”strong” classification performance (Friedman et al.,
2001). In the following subsection, the solutions proposed by the competitors 19

are presented according to the choices made in terms of features, representation
and classification. In Table 5, we have indicated the most relevant linguistic fea-
tures used by competitors: ’G’ stands for the given features (lexical sophistication,
lexical complexity, etc.), ’O’ for other linguistic indicators, ’W’ for words, ’C’ for
characters and ’S’ for syntactic features.

Table 5 – Comparison of the different methods proposed by the different teams
Team Score Linguistic features Representation Classification
Balikasg 3.49 G O W S Clustering, LDA, BoW GB trees: LightGBM
Terislepacom 7.29 G O W BoW + SVM GB trees: XGBoost
ICSI 8.60 G O W BoW H2O autoML
Caoutchouc 9.45 G O W BoW Logistic regression
ACNK 10.43 G O W Transfer learning LSTM NN
ReciTAL 11.21 G O W S C BoW + Naive Bayes GB trees: XGBoost
TAU 12.82 G O W NastText + PCA Random forest
Cap. Ad-Hoc 14.16 G O W S Doc2Vec, FastText, GloVe Ensemble of CNN
Chamlia 17.51 G O W None Recurrent bi-dir. NN
Haral-Lenca 17.97 G O W S Graph2vec NN
Rufino 33.42 G O W u C Feature selection kNN regressor
Team UTC 40.79 G None GB trees: XGBoost

19. Note that a detailed description of the winning system "Balikasg" has been published on arXiv (Balikas,
2018).
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6.2.1. Features used
A secondary objective of this competition was to determine what the most relevant
features are for predicting a learner’s English proficiency level. To this end, we
offered competitors a set of 59 pre-calculated linguistic characteristics described in
section 4.1. It turns out that this set was not enough for most of the participants,
and many other relevant features were proposed which can be grouped into three
categories.

First, some participants were not satisfied by the provided indices, and they
therefore recomputed some linguistic indicators and proposed others. For instance,
the winning team used spaCy 20 and textstat 21 to recompute the number of sentences
and of difficult words and report a slight improvement in performance by adopting
these metrics. Also, the team Haral-Lenca used 547 values provided by TAALES
software 22.

Second, use of the full text allowed participants to design semantic features
based on word representations, topic and language models. To this end, some usual
preprocessing tools such as NLTK 23 have been used to clean the text data including
capitalization, numbers and characters normalisation and other details using regular
expressions. Note that for our challenge, stopword removal is not a good strategy
since use of very frequent words (usually, function words such as articles or auxil-
iary verbs) provides some discriminative information about the English level.

Third, the winning team shows that the use of spelling mistakes and syntactic
patterns found in the essays, such as typos and part-of-speech (POS) tags, improves
performance. The number of typos can be determined (and thus corrected) using the
GNU English dictionary. The use of a POS tagger such as the one included in spaCy
enables processing of other features such as a unigram term-frequency approach on
top of POS sequences, the size of the largest noun phrase, and the number of distinct
POS tags in each essay.

6.2.2. Representation
Once features are determined, the choice of representation mode is critical for ob-
taining good results. Representation often comes with dimensionality reduction
using principal component analysis (PCA) or feature selection (see for instance
Flach, 2012). Interestingly, Rufino’s team performs poorly by selecting the 13 most

20. spacy.io
21. github.com/shivam5992/textstat
22. kristopherkyle.com/taales.html
23. nltk.org

spacy.io
github.com/shivam5992/textstat
kristopherkyle.com/taales.html
nltk.org
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significant features, while Terislepacom reports very good results, and even an im-
provement, when selecting only the top 10 most relevant features.

To deal with natural language, different representations were proposed. The
most popular, which also gave the best results, is the bag of words (BoW) that
counts how many times a word or a bigram appears in a text. To get rid of the size
effect, word counts are often replaced with term frequency (TF) and inverse docu-
ment frequency (IDF) scores across the whole data set. This technique has also been
applied to character ngrams and POS tag ngrams. Another way to represent a text
is to use a word embedding approach that maps terms or bigrams obtained from a
corpus to vectors of real numbers. Most popular approaches are Word2vec 24, Fast-
Text 25 and GloVe 26. Samples of 17,000, 22,000, and 60,000 words and bigrams
were used by different teams. The Captain Ad-Hoc team used a Doc2vec repre-
sentation (Le & Mikolov, 2014) while Haral-Lenca proposed representing complex
structures by learning distributed representations of graphs using Graph2vec 27 with
not-so-convincing results.

The Balikasg team used embeddings to extract bag-of-clusters representations
together with the Latent Dirichlet Allocation (LDA), an unsupervised model that
captures text semantics through 30 to 60 latent topics 28. On top of these classes, a
Naive Bayes classifier was used by the ReciTAL team to estimate probabilities for
each category.

6.2.3. Classification methods
In 2006, the IEEE Conference on Data Mining (ICDM) identified the top 10 ma-
chine learning algorithms. Among them competitors used decision trees (random
forest), boosting (GB trees), support vector machines (SVM), k nearest neighbors
(kNN), Naive Bayes and logistic regression (for details see for instance (Murphy,
2012) or (Abney, 2007)). The well-known "no free lunch theorem" in machine
learning states that no single algorithm works best for every problem. As a result,
many different algorithms should be tested, while using a hold-out “validation set”
of data to evaluate performance and select the most relevant option. More than the
method itself, it is the choice of input and the tuning of the hyperparameters that
make the difference.

Deep neural networks are missing from the IEEE ICDM list because in 2006
they were not yet as widespread, while today they often establish the state of the

24. mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model
25. fasttext.cc/docs/en/english-vectors.html
26. nlp.stanford.edu/projects/glove/
27. github.com/MLDroid/graph2vec_tf
28. github.com/balikasg/topicModelling

mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model
fasttext.cc/docs/en/english-vectors.html
nlp.stanford.edu/projects/glove/
github.com/MLDroid/graph2vec_tf
github.com/balikasg/topicModelling
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art in the field of text classification. More precisely, the generic term "deep neural
networks" refers to different types of models used by competitors such as standard
feedforward neural networks (referred to as NN), convolutional neural networks
(CNN), long short-term memory neural networks (LSTM NN) and the recurrent
bi-directional network with attention (Recurrent bi-dir. NN). For more details see
for instance (Goldberg, 2017) or the on-line material of the syllabus of the Stanford
course CS224d on Deep Learning for natural language processing 29.

Interestingly, on this particular problem, deep neural networks did not deliver
the best results and were overtaken by GB trees and logistic regression. However,
it is worth mentioning the remarkable performance achieved by the ACNK team.
Only using texts written by learners as input, they demonstrate that applying long
short-term memory neural networks (LSTM NN) together with transfer learning
as implemented in the universal language model fine-tuning (ULMFiT) 30 can be
very effective. Transfer learning refers to the knowledge transfer between tasks
(Thrun & Pratt, 1998), that is, the use of a model solving one problem (such as
language modelling on a WikiText data set) to tackle another related task (such
as text classification) using significantly less data than if training from scratch. A
common transfer learning strategy is to specialise and fine-tune the first model using
data from the application of interest. This popular approach in image classification
is now fully lifted into NLP tasks (see ULMFiT for instance).

Finally, at least one competitor (ICSI) used an AutoML tool, an off-the-shelf
machine learning method that automatically performs algorithm selection and hy-
perparameter tuning, obtaining good performances at a low implementation cost.
Such an AutoML function is now available in some machine learning frameworks
such as H2O 31 (the one used by ICSI) and auto-sklearn 32.

6.2.4. The software used
For this competition, Python was the most popular programming language. The
tools the participants used are described in Table 6. The software components 33

range from libraries to preprocess natural language to core machine learning frame-
works, including tools for word/sentence/text embedding or language model query.

29. cs224d.stanford.edu/syllabus.html
30. nlp.fast.ai/category/classification.html
31. docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
32. automl.github.io/auto-sklearn
33. The code produced for the competition by Terislepacom team is available at github.com/

AlexouGarcia/CAP2018_SharedTask_2nd

cs224d.stanford.edu/syllabus.html
nlp.fast.ai/category/classification.html
docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
automl.github.io/auto-sklearn
github.com/AlexouGarcia/CAP2018_SharedTask_2nd
github.com/AlexouGarcia/CAP2018_SharedTask_2nd
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Table 6 – Summary of frameworks and libraries the participants used.
Framework/Library Usage within the competition

Natural language preprocessing tools
Spacy Number of words/sentences, Unigram TF, POS. . .
TextStat Essay statistics to determine complexity and grade level

NLTK
Text capitalization, numbers and characters normaliza-
tion. . .

TAALES Tool for the Automatic Analysis of Lexical Sophistication
Text representation learning

Word2Vec, FastText, Glove Word embedding
Doc2vec Sentence and essay embedding
Graph2vec Graph embedding of complex representation of the essays
Balikasg’s topicModelling Latent Dirichlet Allocation for topic modeling

Kenlm
Bigram language modelling with modified Kneser-Ney
smoothing
Machine learning

Sk-learn, Dmlc XGboost,
Microsoft LightGBM

Classification pipeline

Keras High-level NN application programming interface (API)
ULMFiT LSTM NN training for NLP with transfer learning
H20 Automatic machine learning

6.2.5. Methodological concerns
First, as pointed out by Igor Axinti, Yannis Haralambous and Philippe Lenca, it was
possible to download the EFCAMDAT corpus in full and retrieve all the texts from
test data sets and thus the correct associated labels. For this reason, details of the
algorithm used by each participant were requested.

Second, as reviewed in Section 3, the emphasis of the CEFR on the commu-
nicative functions that a learner ought to be able to perform at each proficiency
level potentially introduces a correlation between task types and proficiency. In-
deed, task effects have been demonstrated on elicited language in EFCAMDAT by
Alexopoulou et al. (2017). Since each EFCAMDAT task comes with a topic vari-
able, it was possible that competitors might use this variable to predict proficiency.
To prevent the use of this variable and encourage identification of proficiency, ir-
respective of task/topic, we removed this variable information from the data set.
However, in some cases where a specific task prompt elicited very specific lexical
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items (e.g. proper nouns, such as ’Tour Eiffel’), some competitors were able to
retrieve words that were strongly correlated with the given task prompts. This sug-
gests that we should have removed entries containing text related to some specific
task prompts.

Note also that competitors suggested metrics which are relevant for distin-
guishing early stages (e.g. A1, A2) based on repetition and spelling error scores,
with no use of the topic.

Figure 4 – Distribution of topics for training and test sets in C1

Finally, we realised during the competition that we made the mistake of not
removing the text variable (the 46th additional variable). This variable (not to
be confused with fulltext) included the ID numbers of the texts. It was created
to help us manipulate the data and was actually correlated with the labels. For this
reason we asked the two winning teams to run their solutions without the text vari-
able. Results reported in Table 7 show a clear deterioration in terms of performance
but not in ranks since the score of the winning team without the text variable still
outperforms all others.
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Table 7 – Comparison of the results obtained by the two winning teams with and
without the text variable.

With text variable Without text variable
Score Error Score Error

1. Balikasg 3.49 1.41% 8.25 2.43%
2. Terislepacom 7.29 2.23% 11.83 3.57%

6.3. Analysis of the results

Table 8 presents the confusion matrix of the best results obtained. The largest con-
fusion rates are observed in consecutive classes, which is normal. However, there is
a large gap between C2 and the rest of the classes, and the maximum confusion rate
(bold font in the table) is obtained for the C2 samples. In one case out of 5, the sys-
tem predicts these to be C1. This can be explained by the fact that the C2 class has
a very small number of training samples and that the boundary between C1 (level
13-15 in EFCAMDAT) and C2 (level 16) is difficult to establish or somehow fuzzy.
Note that among these five misclassified samples two of them are short sentences,
which is unusual for the C2 sample.

Table 8 – Confusion matrices by Balikasg in number of examples (left) and percent-
age (right).

Predicted Predicted
A1 A2 B1 B2 C1 C2 A1 A2 B1 B2 C1 C2

R
ea

l

A1 5,622 45 11 1 2 0 99.0 0.8 0.2 0.0 0.0 0
A2 19 3,776 45 1 0 3 0.5 98.2 1.2 0.0 0 0.1
B1 3 10 2,669 4 5 1 0.1 0.4 99.1 0.1 0.2 0.0
B2 0 3 5 1,138 20 2 0 0.3 0.4 97.4 1.7 0.2
C1 0 0 2 4 239 1 0 0 0.8 1.6 97.1 0.4
C2 0 0 0 1 5 19 0 0 0 4.0 20.0 76.0

More costly errors also occurred, such as mislabelled samples whose true label
is several classes apart. This is the case, for example, for two samples labelled A1
and predicted as C1, and three others, labelled A2 and predicted as C2. In the first
case, we note the use of several proper nouns in a single long sentence. In the
second case, the sentences are also quite lengthy and tokenisation issues led to an
over-interpretation of the proper nouns as rare words. The use of quotes artificially
elevated lexical sophistication metrics as well.
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All the available EFCAMDAT scripts for advanced learners (C2) of French
nationality were included, but the small number of texts for this proficiency level is
a clear limitation to the effectiveness of machine learning techniques.

Similarly, instructions for C2 topics account for many findings of the Terislepa-
com Team. Topics such as "Attending a robotics conference" and "Writing about a
symbol of your country" resulted in making words "robot" and "Eiffel" artificially
effective predictors. Surprisingly, "UFOs" was also detected as a good predictor
for class C2. It is an artifact of only one text but used four times, for the topic
"Researching a legendary creature".

Interestingly, analysing this method evidenced the lexical bias introduced by
the task prompts used in the EFCAMDAT data. Tasks for early stages are heavily
based on self-presentation, so that "task description" is almost a criterial feature of
its own. This is partly due to the fact that EFCAMDAT reflects a teaching curricu-
lum from beginner to advanced levels where certain topics and associated lexis are
characteristic of specific proficiency levels. Even though we had cleared the es-
say topic from the competition data set, instructions such as "Introducing yourself
by email" or "Writing an online profile" are likely to trigger specific lexical units,
which in turn are correlated with proficiency.

6.4. Lessons learnt

As expected, the best results were achieved through the use of many different types
of characteristics including the features provided with their re-engineered deriva-
tions, the raw text, and syntactic patterns. It was sensitivity to these syntactic and
stylistic (repetitions) properties that made the difference between the first and sec-
ond places in the competition. But the use of all these variables is not necessary,
and it has been shown that very good results can be achieved by cleverly selecting
only 10 (very well chosen) variables (including the number of sentences, the num-
ber of words, the number of letters, the average sentence length) as evidenced by
the system of Terislepacom. An important aspect from a linguistic standpoint was
the inclusion of stopwords in the analysis, contrarily to standard machine learning
techniques. Unexpectedly from a machine learning perspective, deep learning cou-
pled with word embeddings were not able to give the best results. In our opinion,
this is due to the amount of data available which is not sufficient to effectively train
deep neural networks. Nevertheless, for a classification task using only raw natural
text as an input, deep learning together with transfer learning approaches (learning
whereby big data is used to model the domain-specific data under scrutiny) can be
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trained very quickly and efficiently by using tools such as the universal language
model fine-tuning (ULMFiT) 34.

Receiving submissions from competitors with a strong mathematical back-
ground allowed a range of submissions that were not necessarily infused with natu-
ral language processing techniques. Some submissions made the most of packages
reputed for their success on language tasks. The strong classification performance
of transfer learning methods suggest that these kinds of techniques could be applied
to learner data, even for A1 / A2 levels.

However rudimentary the task might seem, this competition may have been
the first ever learner data challenge based on the French component of the EFCAM-
DAT corpus. Perhaps more interesting tasks and formats could be designed. A more
refined version of the competition could be organised, taking into account several
tracks for several tasks. In one of the tracks, several first languages could be mixed
(French was the only one used with this data set) in order to see if specific fea-
tures could help indentify L1-based errors. For example, the Duolingo challenge
had three tracks (three competition subsets) for three language learning trajectories
(English to French, English to Spanish, Spanish to English). Last, more linguistic
features could be used in the competition. We had not included syntactic features
(Lu, 2010) among the linguistic features supplementing the text. More than 400
features can now be automatically computed in the Web-based tool CTAP 35 (Chen
& Meurers, 2016) for automatic complexity analysis. Other corpora could be anal-
ysed, as well as other languages, such as using the MERLIN data on German, Czech
or Italian (Boyd et al., 2014).

7. Conclusions

This challenge based on learner data was a success at the CAp2018 Machine Learn-
ing Conference and generated real interest among the machine learning community.
The solution suggested by the winner solved the task as it was formulated, with the
proviso that the trained model probably suffers from overfitting in the sense that the
lexicon used is too heavily dependent on classes. There are 128 topics in the data set
(see full distribution in Figure 4). The topic distribution in the test set was similar
to the topic distribution in the training set (see Figure 4). With hindsight, we con-
sider that we should have used different topics in the training and test sets since, as
Murakami (2016) pointed out, there is a correlation between the level of the learner

34. nlp.fast.ai/category/classification.html
35. http://www.ctapweb.com/

nlp.fast.ai/category/classification.html
http://www.ctapweb.com/
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and the task instruction in the EFCAMDAT. It is worth noting that the variety of
128 tasks in EFCAMDAT contrasts with corpora like the MERLIN corpus 36 which
involve writings from exams and where CEFR levels A and B involve a writing
task of the same genre (writing a letter). This means that machine learning systems
could not exploit the task or topic characteristics for CEFR alignment, at least not
as readily as with our EFCAMDAT task. However, since CEFR descriptors require
performance on a variety of tasks, it seems more appropriate to set competitions
where systems are trained on one (sub)set of tasks and are able to ’generalise’ to a
different (sub)set of tasks.
We have highlighted some of the benefits for the learner corpus research commu-
nity, but they might be made more obvious if the data sets were universally available
and potentially processed and discussed by other scientific communities. The full
availability of data sets on repositories like Kaggle has been instrumental in the
evolution of machine learning. The Duolingo challenge data set was uploaded to a
public repository 37 with a Creative Commons Attribution-NonCommercial 4.0 In-
ternational License (CC BY-NC 4.0) and standard bibliographical credits (Settles,
2018). The Kaggle repository includes data sets on sign language 38 or on short text
language identification, a task where participants have to predict the language of a
Twitter post 39. The complete availability of the competition data sets in reposito-
ries such as Kaggle should be the real order of the day to develop a data culture
in learner corpus research. Data sets and notebooks which serve scientific blogs
facilitating the implementation of the method (the script and its comments) are part
and parcel of the ML community. Such a step within the learner corpus community
needs to be balanced against the need to build corpora that can support wider re-
search in language learning and the need to obtain informed consent from learners
regarding the use of their data. In the case of EFCAMDAT, the terms of use have
taken into account a wider range of academic users in the SLA and LCR commu-
nities, while ensuring use in accordance with obtained informed consent inevitably
leads to managed access. So far, the data culture has been somewhat hindered in
the learner corpus research community due to copyright restrictions or the lack of
precise metadata about learner levels. Learner corpora collected in the early days of
learner corpus research did not use placement tests systematically, resulting in pub-
licly available learner data sets which often lack a crucial variable assessing learner
levels. Learner corpora have been used with data-mining techniques (Jarvis, 2011)

36. https://merlin-platform.eu/index.php
37. https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/8SWHNO
38. https://www.kaggle.com/kumawatmanish/deep-learning-sign-language-dataset
39. https://www.kaggle.com/c/shorttext-langid/data

https://merlin-platform.eu/index.php
https://dataverse.harvard.edu/data set.xhtml?persistentId=doi:10.7910/DVN/8SWHNO
https://www.kaggle.com/kumawatmanish/deep-learning-sign-language-data set
https://www.kaggle.com/c/shorttext-langid/data
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and can be used as material for data sets calling for more elaborate methods for au-
tomatic treatment and analysis of learner corpus data (Díaz-Negrillo et al., 2013),
provided labels are assigned for supervised classification tasks. For the learner cor-
pus research community, money and time should be invested in analyzing properly
scored essays on specifically described tasks. Discoverable, accessible and retriev-
able data is key in the FAIR paradigm (Mons, 2018). Calling for more reproducible
research with quantitative methods is consistent with Paquot & Plonsky (2017) plea
for more quantitative research in learner corpus research.
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Appendix 1: The list of textual metrics used as given features in the
competition

1. sentences: Number of sentences.
2. words: Number of words.
3. letters: Named vector with total number of letters ("all") and possibly several

entries
4. punct: Number of punctuation characters.
5. avg.sentc.length: Average sentence length (number of words per sentence)
6. avg.word.length: Average word length (number of characters per word)
7. avg.syll.word: Average number of syllables per word
8. sntc.per.word: Number of sentences per word.
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9. TTR: type to token ratio
10. ARI: Automated Readability Index. It takes into account the number of token

words divided by the number of syllables and the number of prepositions in
the text.

11. Bormuth: Bormuth readability index. It gives an estimation of the grade re-
quired to understand the text. The computation is based on the most frequent
3 000 words in English (Dale-Chall list).

12. Coleman.C1: Readability Formulas, taking into account monosyllabic words
13. Coleman.C2: variant also taking into account the number of words divided

by the number of sentences
14. Coleman.C3 variant also taking into account the proportion of pronouns

among words
15. Coleman.C4 variant also taking into account the proportion of prepositions

among words
16. Coleman.Liau : readability index, proportional to the number of letters and

sentences (every 100 words)
17. Dale.Chall : readability index (1995), which reflects the degree of familiarity

of the lexicon, compared to the 3,000 most frequents words in English (Dale-
Chall list).

18. Danielson.Bryan.DB1 & Danielson.Bryan.DB2 : two readability formulas
based on the number of characters (space included).

19. Dickes.Steiwer: readability for German that takes into account values propor-
tional to the number of words, characters and TTR.

20. DRP: (Degrees of Reading Power) measure readibility from Bormuth index.
21. ELF : (Easy Listening Formula): number of polysyllabic words divided by

the number of sentences.
22. Farr.Jenkins.Paterson: a simplified version of Flesch, where the number of

one syllable words per 100 words replaces the number of syllables per 100
words.

23. Flesch : the English values for this language-dependent metrics have been
used. The index takes into account the number of syllables. It ranges between
100 (easy texts) and 0 (very difficult texts).

24. Flesch.Kincaid : this metric was developed with Vietnam draftees to assess
the US school grade corresponding to the difficulty level of a text.

25. FOG : readability index suggested in the 1950’s. It measures the number of
years of study (school grade) required to understand a text on its first reading.
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It takes into account the number of words per sentence and the proportion of
words with three syllables or more.

26. FORCAST : (FORCAST = Patrick FORd, John CAylor and Thomas STicht)
a method implemented with Vietnam draftees, which is based on word length.

27. Fucks : a stylistic feature proposed by W. Fucks. The number of characters
divided by the number of words is multiplied by the number of words divided
by the number of sentences.

28. Linsear.Write : readability index that takes into account the number of words
of three syllables or more, the number of words and the number of sentences.

29. LIX : this readability index was first proposed for Swedish, it takes into ac-
count the proportion of words of seven letters or more. Texts with a 25 index
are supposed to be easy to read, "normal" texts are around 40 and texts above
50 are considered to be difficult to read.

30. nWS1 to nWS4 : these readability indices proposed in the 80’s for the analysis
of German (Neue Wiener Sachtextformeln), take into account -in variable
proportions- words of three syllables or more and words of six letters or more.

31. RIX : adaptation for English of the LIX index. It takes into account the num-
ber of six letters or more divided by the number of sentences.

32. SMOG : Simple Measure of Gobbledygook (SMOG). Readability Index based
on the square root of the number of polysyllabic words computed at the be-
ginning, middle and end of the text.

33. Spache : readability index based on the number of words of a text that is not
in Spache reference inventory of words.

34. Strain : readability index for medias proposed in 2006, which takes into ac-
count the number of syllables.

35. Traenkle.Bailer.TB1 & Traenkle.Bailer.TB2 : readability indices taking into
account the proportion of prepositions (Traenkle.Bailer.TB1) and conjunc-
tions (Traenkle.Bailer.TB2).

36. TRI (Kuntzsch’s Text-Redundanz-Index) readability index initially suggested
for German newspapers, it takes into account the number of punctuation sym-
bols and foreign words.

37. Tuldava: a supposedly language-independent readability index that takes into
account the logarithm of the number of words divided by the number of sen-
tences.

38. Wheeler.Smith: readability index proposed in the 1650s that takes into ac-
count words of two syllables ore more.

39. CTTR : algorithm proposed by Carroll to smooth TTR.
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40. HD-D (vocd-D): lexical sophistication index based on the likelihood to find a
given word in a 42 word window.

41. Herdan’s C : log(V) / log(N), where V is the number of types and N the
number of tokens.

42. Maas & lgV0 : indices of lexical complexity suggested in 1972, which take
into account logarithms of types and tokens ’

43. MATTR: (Moving Average of TTR), computed by means of a mobile window.
Returns "NA" if the text has less than 400 words.

44. MSTTR (Mean Segmental Type-Token Ratio): averages TTR over several
segments.

45. MTLD (Measure of Textual lexical sophistication): corrected measure of the
TTR

46. Root TTR : rooted square TTR
47. Summer: lexical sophistication index, log(log(V)) / log(log(N))
48. TTR.1 : rounded Type-Token ratio
49. Yule’s K : lexical sophistication index proposed by Yule in 1944.
50. level: the European level (from A1 to C2) of the learner that we try to predict

Appendix 2: Definition of some metrics used as features
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Table 9 – Definition of some metrics used as features. In the table, N denotes the
number of words, V the number of type of words, X the frequency vector for each
type and f the frequency vector for each X (adapted from (Lissón & Ballier, 2018)).
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