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Abstract. We study the estimation, in Lp-norm, of density functions defined on [0,1]d . We construct a new family of kernel
density estimators that do not suffer from the so-called boundary bias problem and we propose a data-driven procedure based on
the Goldenshluger and Lepski approach that jointly selects a kernel and a bandwidth. We derive two estimators that satisfy oracle-
type inequalities. They are also proved to be adaptive over a scale of anisotropic or isotropic Sobolev–Slobodetskii classes (which
are particular cases of Besov or Sobolev classical classes). The main interest of the isotropic procedure is to obtain adaptive results
without any restriction on the smoothness parameter.

Résumé. Nous étudions l’estimation, en norme Lp , d’une densité de probabilté définie sur [0,1]d . Nous construisons une nouvelle
famille d’estimateurs à noyaux qui ne sont pas biaisés au bord du domaine de définition et nous proposons une procédure de
sélection simultanée d’un noyau et d’une fenêtre de lissage en adaptant la méthode développée par Goldenshluger et Lepski. Deux
estimateurs différents, déduits de cette procédure générale, sont proposés et des inégalités oracles sont établies pour chacun d’eux.
Ces inégalités permettent de prouver que les-dits estimateurs sont adaptatifs par rapport à des familles de classes de Sobolev–
Slobodetskii anisotropes ou isotropes. Dans cette dernière situation aucune borne supérieure sur le paramètre de régularité n’est
imposée.

MSC: 62G05; 62G20
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1. Introduction

In this paper we study the classical problem of the estimation of a density function f : �d → R where �d = [0,1]d .
We observe n independent and identically distributed random variables X1, . . . ,Xn with density f . In this context, an
estimator is a measurable map f̃ : �n

d → Lp(�d) where p ≥ 1 is a fixed parameter. The accuracy of f̃ is measured
using the risk:

R
(p,q)
n (f̃ , f ) = (En

f ‖f̃ − f ‖q
p

)1/q
,

where q is also a fixed parameter greater than or equal to 1 and En
f denotes the expectation with respect to the

probability measure Pn
f of the observations. Moreover the Lp-norm of a function g : �d → R is defined by

‖g‖p =
(∫

�d

∣∣g(t)
∣∣p dt

)1/p

.
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We are interested in finding data-driven procedures that achieve the minimax rate of convergence over Sobolev-
type functional classes that map �d onto R. The density estimation problem is widely studied and we refer the reader
to Devroye and Györfi [15] and Silverman [38] for a broadly picture of this domain of statistics. One of the most
popular ways to estimate a density function is to use kernel density estimates introduced by Rosenblatt [34] and
Parzen [32]. Given a kernel K (that is a function K : Rd → R such that

∫
Rd K(x)dx = 1) and a bandwidth vector

h = (h1, . . . , hd ), such an estimator writes:

f̂h(t) = 1

nVh

n∑
j =1

K

(
t − Xj

h

)
, t ∈ �d, (1)

where Vh =∏d
i=1 hi and u/v stands for the coordinate-wise division of the vectors u and v.

It is commonly admitted that bandwidth selection is the main point to estimate accurately the density function
f and a lot of popular selection procedures are proposed in the literature. Among others let us point out the cross
validation (see Bowman [10], Rudemo [36], Chiu [13]) as well as the procedure developed by Goldenshluger and
Lepski in a series of papers in the last few years (see Goldenshluger and Lepski [17–19], for instance) and fruitfully
applied in various contexts.

Dealing with bounded data, the so-called boundary bias problem has also to be taken into account. Indeed, classical
kernels suffer from a severe bias term when the underlying density function does not vanish near the boundary of their
support. To overcome this drawback, several procedures have been developed: Schuster [37], Silverman [38] and Cline
and Hart [14] studied the reflection of the data near the boundary as well as Marron and Ruppert [28] who proposed a
previous transformation of the data. Müller [29], Lejeune and Sarda [24], Jones [21], Müller and Stadtmüller [30] and
Botev, Grotowski and Kroese [7] proposed to construct kernels which take into account the shape of the support of the
density. In the same spirit, Chen [12] studied a new class of kernels constructed using a reparametrization of the family
of Beta distributions. For these methods, practical choices of bandwidth or cross-validation selection procedures have
generally been proposed. Nevertheless few papers study the theoretical properties of bandwidth selection procedures in
this context. Among others, we point out Bouezmarni and Rombouts [8] – who study the behavior of Beta kernels with
a cross validation selection procedure in a multivariate setting in the specific case of a twice differentiable density.
Bertin and Klutchnikoff [6] study a selection rule based on the Lepski’s method (see Lepski [25]) in conjunction
with Beta kernels in a univariate setting and prove that the associated estimator is adaptive over Hölder classes of
smoothness smaller than or equal to two. In this paper, we aim at constructing estimation procedures that address
both problems (boundary bias and bandwidth selection) simultaneously and with optimal adaptive properties in Lp

norm (p ≥ 1) over a large scale of function classes. To tackle the boundary bias problem, we construct a family of
kernel estimators based on new asymmetric kernels whose shape adapts to the position of the estimation point in
�d . We propose two different data-driven procedures based on the Goldenshluger and Lepski approach that satisfy
oracle-type inequalities (see Theorems 1 and 3). The first procedure, based on a fixed kernel, consists in selecting a
bandwidth vector. Theorem 2 proves that the resulting estimator is adaptive over anisotropic Sobolev–Slobodetskii
classes with smoothness parameters (s1, . . . , sd) ∈ (0, ∞)d smaller than the order of the kernel and with the optimal
rate n−s/(2s+1) with s = (

∑d
i=1 1/si)

−1. The second procedure jointly selects a kernel (and its order) and a univariate
bandwidth. Such selection procedures have been used only in the context of exact asymptotics in pointwise and sup-
norm risks, and for very restrictive function classes. Theorem 4 states that this procedure is adaptive over isotropic
Sobolev–Slobodetskii classes without any restriction on the smoothness parameter s > 0 and achieves the optimal
rate n−s/(2s+d). These function classes are quite large and correspond to a special case of usual Besov classes (see
Triebel [40]). Note also that the same results can be obtained over anisotropic Hölder classes with the same rates
of convergence. Such adaptive results without restrictions on the smoothness of the function to be estimated and
with the optimal rates n−2s/(2s+d) or n−s/(2s+1) have been established only for ellipsoid function classes as in Asin
and Johannes [1], among others. For bounded data, we also mention Rousseau [35] or Autin et al. [2] that construct
adaptive estimators based on Bayesian mixtures of Beta and wavelets respectively but with an extra logarithmic term
factor in the rate of convergence. Additionally note also that Beta kernel density estimators are minimax only for small
smoothness (see Bertin and Klutchnikoff [5]) and consequently neither allow us to obtain such adaptive results.

The rest of the paper is organized as follows. In Section 2, we detail the effect of the boundary bias and we propose
a new family of estimators that do not suffer from this drawback. We construct in Section 3 our two main statistical
procedures. The main results of the paper are stated in Section 4 whereas their proofs are postponed to Section 5.
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2. On the boundary bias problem

2.1. Weakness of convolution kernel estimators

In this section we focus on the so-called boundary bias problem that arises when classical convolution kernels are
used. To illustrate our point and for the sake of simplicity we assume that d = 1 and p = q ≥ 2. In what follows we
consider the estimators defined in (1):

f̂h(t) = 1

nh

n∑
j =1

K

(
t − Xj

h

)
, t ∈ �1,

where 0 < h < 1 is a bandwidth and the kernel K : R → R is such that:

Supp(K) ⊆ [−1,1] and
∫ 0

−1
K(u)du = 1 − γ,

with 0 < γ < 1. In this context, the following lemma – which is straightforward – proves that these estimators suffer
from an asymptotic pointwise bias at the endpoint 0 as soon as f (0) �= 0.

Lemma 1. Assume that f is continuous at 0. Then, we have En
f f̂h(0) −−−→

h→0
(1 − γ )f (0).

However this problem is not specific to the endpoint and generalizes to a whole neighborhood of this point. The
simplest situation that allows one to understand this phenomenon is to consider the estimation of the function f0 =
I(0,1) where, here and after, I(a,b) stands for the indicator function of the interval (a, b). In this case, under a more
restrictive assumption on the kernel, the integrated bias can be bounded from below by h1/p up to a multiplicative
factor. More precisely we can state the following result:

Proposition 1. Assume that K is a kernel such that Supp(K) ⊆ [−1,1] and assume that there exist 0 < δ < 1 and
0 < γ < 1 that satisfy∫ a

−1
K(u)du ≤ 1 − γ for any 0 ≤ a ≤ δ.

Then, for any 0 < h < (1 + δ)−1 we have:∥∥En
f0

(f̂h) − f0
∥∥

p
≥ (δ1/pγ

)
h1/p.

As a consequence of this proposition we can state the following lower bound on the rate of convergence of the classical
convolution kernel estimators over a very large family of functional classes.

Proposition 2. Let p ≥ 2. Let � be a functional class such that f0 ∈ �. Assume that K ∈ L2([−1,1]). Under the
assumptions of Proposition 1, we have:

lim inf
n→0

inf
h∈(0,1/4)

n1/(2+p) sup
f ∈�

R
(p,p)
n (f̂h, f ) > 0.

Now, let us comment these two results. First, remark that the assumptions made on the kernel are not very restrictive
since any continuous symmetric kernel K such that K(0) > 0 can be considered. Next, in view of Theorem 4 stated
below, Proposition 2 proves that the convolution kernel estimators are not optimal. In particular, they do not achieve
the minimax rate of convergence over usual Hölder classes with smoothness parameter s > 1/p (see Definition 2
as well as Remark 3 for more details). This result is mainly explained by Proposition 1 since, in this situation, the
integrated bias term is greater than h1/p which is larger (in order) than the expected term hs (see Proposition 3 below).
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2.2. Boundary kernel estimators

The main drawback of classical convolution kernels can be explained as follows: they look outside the support of the
function to be estimated. As a consequence, f0 is seen as a discontinuous function that maps R to R. This leads to a
severe bias and explains why “boundary kernels” found in the literature have all their mass inside the support of the
target function. Indeed, in this situation f0 is seen as a function that maps �1 to R which is a very smooth function.
This allows the bias term to be small (see Proposition 3 below)

In last decades, several papers proposed different constructions of kernels that can take into account the boundary
problem. Let us point out that, among others, Müller and Stadtmüller [30] and Chen [12] constructed specific kernels
whose shape adapts to the localization of the estimating point in a continuous way. Even if this continuously deforming
seems to be an attractive property there are still some drawbacks to using such approaches. On the one hand, the beta
kernels cannot be used to estimate smooth functions (see Bertin and Klutchnikoff [5]). On the other hand, the kernels
proposed by Müller and Stadtmüller [30] are solutions of a continuous least square problem for each estimating point.
In practice the kernels are computed using discretizations of the variational problems. This can be computationally
intensive. Moreover, to our knowledge, there are no theoretical guarantees regarding bandwidth selection procedures
in this context.

In this paper, we propose a simple and tractable way to construct boundary kernels that intends to solve the afore-
mentioned problems. The main advantage of our construction lies in the fact that the resulting estimators are easy to
compute and that the mathematical analysis of the adaptive procedure is made possible even in the anisotropic case.

To construct our kernels we first define the following set of univariate bounded kernels whose support is included
into �1:

W =
{
W : R → R : sup

u∈�1

∣∣W(u)
∣∣< +∞,W(u) = 0 for u /∈ �1,

∫
�1

W(u)du = 1

}
.

In the following, we will say that W ∈ W is a kernel of order m if∫
�1

W(u)ur du = 0, r = 1,2, . . . ,m. (2)

Then, for any bandwidth h ∈ (0,1/2)d and any sequence of kernels W = (W1, . . . ,Wd) ∈ Wd , we define the following
density estimator:

f̃W,h(t) = 1

n

n∑
j =1

KW,h(t,Xj ), t ∈ �d,

where, for t ∈ �d the “boundary” kernel KW,h(t, ·) is defined by:

KW,h(t, x) =
d∏

i=1

(
1

h i
Wi

(
σ(ti)

ti − xi

hi

))

for any x ∈ �d . Here σ(·) = 2I(1/2,1)(·) − 1.

Remark 1. Note that, along each coordinate, the kernel Wi is simply flipped according to the position of ti with
respect to the closest boundary. Similar constructions can be found in the literature. For example Korostelev and
Nussbaum [22] and Bertin [3] proposed to decompose �1 into three different pieces – that depend on the bandwidth
h – as follows: �1 = (0, h) ∪ [h,1 − h] ∪ (1 − h,1). Specific kernels are used for the boundaries while classical
kernels are used on [h,1 − h]. However, to our best knowledge, similar constructions in a multivariate framework do
not allow to obtain adaptive results in the anisotropic case.
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2.3. Bias over some functional classes

In this paper we focus on minimax rates of convergence over Sobolev–Slobodetskii classes. We recall their definitions
in Definitions 1 and 2 (see also Opic and Rákosník [31], Simon [39], Triebel [40]).

In the following, for f : �d → R and any i = 1, . . . , d and k ∈ N, we denote by Dk
i f the kth-order partial derivative

of f with respect to the variable xi . For any α ∈ N
d , we denote by Dαf the mixed partial derivatives

Dαf = ∂ |α|f
∂x

α1
1 · · · ∂x

αd

d

,

where |α| = α1 + · · · + αd . Finally, for any positive number u, we denote by �u� the largest integer strictly smaller
than u.

Definition 1. Set s = (s1, . . . , sd) ∈ (0, +∞)d and L > 0. A function f : �d → R, belongs to the anisotropic
Sobolev–Slobodetskii ball Sp(s,L) if:

• f belongs to Lp(�d).

• For any i = 1, . . . , d , D
�si �
i f exists and belongs to Lp(�d).

• The following property holds:

d∑
i=1

Ii

(
D

�si �
i f

)≤ L,

where

Ii(g) =
(∫

�d

∫
�1

|g(x) − g(x1, . . . , xi−1, ξ, xi+1, . . . , xd)|p
|xi − ξ |1+p(si −�si �)

dx dξ

)1/p

.

Definition 2. Set s > 0 and L > 0. A function f : �d → R, belongs to the isotropic Sobolev–Slobodetskii ball
S̃s,p(L) if the following properties hold:

• for any α ∈ N
d , such that |α| ≤ �s�, the mixed partial derivatives Dαf exist and belong to Lp(�d).

• the Gagliardo semi-norm |f |s,p is bounded by L where

|f |s,p =
( ∑

|α|=�s�

∫
�2

d

|Dαf (y) − Dαf (x)|p
‖y − x‖d+p(s−�s�)

2

dx dy

)1/p

,

where ‖ · ‖2 denotes the euclidian norm of Rd .

These classes include several classical classes of functions. Indeed, in the isotropic case, when s > 0 is not an
integer, then S̃s,p(L) corresponds to the usual Besov ball Bs

p,p(L) (see Triebel [40]). Note that both definitions are
the same when d = 1.

The following proposition illustrates the good properties in terms of bias of our boundary kernel estimators. It can
be obtained following Propositions 4 and proof of Proposition 5 given in Section 5.

Proposition 3. Let s > 0 and L > 0. Let h ∈ (0,1/2)d and W ∈ Wd such that for all i ∈ {1, . . . , d} Wi is of order
�s�. Then we have:

sup
f ∈S̃s,p(L)

∥∥En
f f̃W,h − f

∥∥
p

≤ C1 ‖h‖s
2,

where C1 is a positive constant that depends only on W , p, s and L.
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Let s ∈ (0, ∞)d and L > 0. Let h ∈ (0,1/2)d and W ∈ Wd such that for all i ∈ {1, . . . , d} Wi is of order �si �. Then
we have:

sup
f ∈Ss,p(L)

∥∥En
f f̃W,h − f

∥∥
p

≤ C2

d∑
i=1

h
si
i ,

where C2 is a positive constant that depends only on W , p, s and L.

As we will see in Section 4, our boundary kernel estimators and Goldenshluger Lepski selection procedures based
on them have also good properties in terms in minimax and adaptive rate of convergence over these classes.

3. Statistical procedures

We defined in Section 2.2 a large family of kernels estimators that are well-adapted to the estimation of bounded data.
Two subfamilies of estimators designed for the estimation of isotropic or anisotropic functions are now considered in
Sections 3.2 and 3.3 and a unique data-driven procedure is proposed in Section 3.4.

3.1. Family of bandwidth and kernels

We define the set of bandwidth vectors

Hn = {h = (h1, . . . , hd) ∈ (0, h∗
n]d : nVh ≥ (logn)c

}
with c > 0, h∗

n = exp(−√
logn) and Vh =∏d

i=1 hi .
The family of bandwidth Hn includes in particular for n large enough all the bandwidths h = (h1, . . . , hd) of the

form hi = n−ai with 0 < ai < 1 and
∑d

i=1 ai < 1. This family is then rich enough to attain all the optimal rates of
convergence of the form n−s/(2s+1) for (s1, . . . , sd) ∈ (0, ∞)d and s = (

∑d
i=1

1
si

)−1. It is possible to have a weaker

condition on h∗
n choosing h∗

n = (logn)−a(p) with a(p) a positive constant that depends on p. For the sake of simplicity,
we choose to use h∗

n = exp(−√
logn) to avoid multiple cases in terms of p.

We consider the family of kernel (wm)m∈N defined by:

wm(u) =
m∑

r=0

ϕr(0)ϕr(u), u ∈ �1,

where ϕk(u) = √
2k + 1Qk(2u − 1) and Qk is the Legendre Polynomial of degree k on [−1,1] (see Tsybakov [41]).

The kernels wm satisfy several properties given in the following lemma.

Lemma 2. Set m ∈ N∗. The kernel wm is of order m, satisfies ‖wm‖2 = (m + 1) and

wm = arg min
w∈W(m)

‖w‖2, (3)

where W(m) ⊆ W is the family of kernels of order m. Moreover we have

‖wm‖ ∞ = (m + 1)2

and

wm(u) =
m∑

r=0

a(m)
r ur , u ∈ �1, (4)

where a(m) = H −1
m e

(m)
0 where e

(m)
0 = (10 · · · 0)� ∈ R

m+1 and Hm = (1/(i + j − 1))1≤i,j ≤m+1 is the Hilbert matrix of
order m + 1.

Figure 1 represents the kernels wm for different values of m.
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Fig. 1. Plots of the kernel w2 (left) and w5 (right).

3.2. Isotropic family of estimators

For � ∈ N
∗, we define:

h(�) = (e−�, . . . , e−�
)

and m(�) =
[

logn

2�
+ 1

2

]
, (5)

where [b] stands for the integer part of b. We define Liso = {� ∈ N : h(�) ∈ Hn}. For any � ∈ Liso, we consider
W(�) = (wm(�), . . . ,wm(�)) ∈ Wd where the univariate kernel wm is defined by (4).

We define the family of estimators {f̂ iso
� : � ∈ Liso } where

f̂ iso
� = f̃W(�),h(�).

The family {f̂ iso
� : � ∈ Liso } contains kernel density estimators constructed with different kernels and bandwidths.

Selecting � ∈ Liso, or the estimator f̂ iso
� in this family consists in fact in selecting jointly and automatically the order

and the bandwidth of the estimator. The main idea that leads to this construction is the following: if we consider
� ≈ logn/(2s + d), then h(�) ≈ n−1/(2s+d) and m(�) ≥ s. In other words, the estimator f̂ iso

� is constructed using a
kernel of order greater than s and the usual bandwidth (that is, of the classical order) used to estimate functions with
smoothness parameter s. The construction of such a class of estimators allows us to obtain adaptive estimators without
any restriction on the smoothness parameter (see Theorem 4). However, arbitrary kernels of order m cannot be used to
prove Theorem 3 since a control of the Lp-norm of the kernels is required. In particular in Lemma 2, we give bounds
on the Lp-norm of wm and we prove that wm is the kernel of order m with the smallest L2 norm within the kernels of
W of order m.

Note that simultaneous choice of kernel and bandwidth has already been used in the framework of sharp adaptive
estimation only for pointwise and sup-norm risks. On the one hand, in the Gaussian white noise model, Bertin [4]
and Lepski and Spokoiny [27] assume that the smoothness parameter is less than or equal to 2. On the other hand, in
the density model, Butucea [11] consider the case of a finite grid of integer smoothness parameters s1 < · · · < sR and
propose an adaptive procedure for the pointwise risk over a scale of classical Sobolev classes. Note that in this paper,
the maximal smoothness parameter sR may tend to infinity as n goes to infinity. To our understanding this possibility
relies on the fact that the kernels are uniformly bounded by a constant that depends only on s1. Studying the risk over
classical Sobolev classes on R allows Butucea [11] to define the kernels on the Fourier domain and to replace the
moment condition (2) by a weaker one (see Tsybakov [41], Section 1.3 for more details).

Our framework is very different. Indeed we consider the estimation in Lp risks of densities with compact support
that belongs to a scale of Sobolev–Slobodetskii classes indexed by a smoothness parameter s ∈ R+. To do so we have
to consider the classical moment condition (2) which implies, according to Lemma 2, that the sup-norm of any kernel
of order m tends to infinity with m. This requires more technical control of the stochastic terms to obtain the minimax
rates of convergence without additional logarithmic factor.
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3.3. Anisotropic family of estimators

Let W ◦ = (W ◦
1 , . . . ,W ◦

d ) ∈ Wd be such that, for any i = 1, . . . , d , W ◦
i is a bounded kernel and consider h(�) =

(h1(�), . . . , hd(�)) defined by:

hi(�) = e−�i , i = 1, . . . , d,

where � ∈ Lani = {� ∈ Nd : h(�) ∈ Hn}.
We define the anisotropic family of estimators {f̂ ani

� : � ∈ Lani } where

f̂ ani
� = f̃W ◦,h(�).

To make the notation similar to the isotropic case we define W(�) = W ◦, ∀� ∈ Lani. Note that this family of
estimators is more classical than the one constructed in the previous section. All the estimators are defined using the
same kernel W ◦ and depend only on a multivariate bandwidth. Nevertheless, in the following (see Theorem 2), we
will choose a kernel W ◦ = (W ◦

1 , . . . ,W ◦
d ) such that for all i ∈ {1, . . . , d} W ◦

i is of order Mi and a possible candidate
is W ◦

i = wMi
.

3.4. Selection rule

Although the two families differ, the selection procedure is the same in both cases. For the sake of generality, we
introduce the following notation: L is either Lani or Liso and f̂� then denotes f̂ ani

� or f̂ iso
� . For ε ∈ {0,1}d , h ∈ Hn and

W ∈ Wd we define:

�d,ε =
d∏

i=1

(
εi

2
,

1 + εi

2

)
, ‖W ‖p =

∥∥∥∥∥
d⊗

i=1

Wi

∥∥∥∥∥
p


̂ε(W,h,p) =√Vh

(∫
�d,ε

(
1

n

n∑
j =1

K2
W,h(t,Xj )

)p/2

dt

)1/p

and

�̂ε(W,h,p) =
{

2− d(2−p)
2p ‖W ‖2 if 1 ≤ p ≤ 2,

C∗
p(
̂ε(W,h,p) + 2‖W ‖p) if p > 2,

(6)

where C∗
p = 14.7p/logp is the best known constant in the Rosenthal inequality (see Johnson et al. [20]). For any

�, �′ ∈ L we consider:

M̂p(�) = 1√
nVh(�)

∑
ε∈ {0,1}d

�̂ε

(
W(�),h(�),p

)
and M̂p

(
�, �′)= M̂p

(
�′)+ M̂p

(
�′ ∧ �

)
,

where � ∧ �′ is the vector with coordinates �i ∧ �′
i = min(�i, �

′
i ). Now, for any τ > 0 we define:

B̂p(�) = max
�′ ∈L
{‖f̂�∧�′ − f̂�′ ‖p − (1 + τ)M̂p

(
�, �′)}

+, (7)

where x+ = max(x,0) denotes the positive part of x.
We then select

�̂ = arg min
�∈L

(
B̂p(�) + (1 + τ)M̂p(�)

)
,

which leads to the final plug-in estimator defined by f̂ = f̂�̂. In what follows we denote by f̂ ani and f̂ iso the resulting
estimators.
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Remark 2. This procedure is inspired by the method developed by Goldenshluger and Lepski. Here B̂p(�) is linked
with the bias term of the estimator f̂�, see (27), and M̂p(�) is an empirical version of an upper bound on the stan-
dard deviation of this estimator. In fact, for p ≤ 2, the standard deviation in Lp-norm of f̂� on �d,ε is bounded by

2− d(2−p)
2p ‖W(�)‖2. For p > 2, the bound depends on f (see Lemma 3), that is the reason why we use an empirical ver-

sion of this bound defined in (6). This implies that f̂ realizes a tradeoff between B̂p(�) and (1 + τ)M̂p(�). This can be
interpreted as an empirical counterpart of the classical tradeoff between the bias and the standard deviation. Note that
as discussed in Lacour and Massart [23] it is also possible to consider in (7) a different constant τ ′ satisfying τ ′ < τ .

4. Results

In this section we present our results. Theorem 1 consists in an oracle-type inequality which guarantees that the
anisotropic estimation procedure defined above performs almost as well as the best estimator from the collection
{f̂ ani

� : � ∈ Lani }. Moreover, Theorem 2 states that this procedure also achieves the minimax rate of convergence
simultaneously over each anisotropic Sobolev–Slobodetskii class in a given scale.

Theorem 1. Assume that f : �d → R is a density function such that ‖f ‖∞ ≤ F∞. Then there exists a positive
constant K1 that depends only on F∞, W ◦, p, q and τ , such that, for any n ≥ 2:

R
(p,q)
n

(
f̂ ani, f

)≤ K1 inf
�∈Lani

{∥∥En
f f̂ ani

� − f
∥∥

p
+ max

�′ ∈Lani

∥∥En
f f̂ ani

�′ − En
f f̂ ani

�∧�′
∥∥

p
+ 1

(nVh(�))1/2

}
.

Theorem 2. Set M = (M1, . . . ,Md) ∈ N
d , s ∈∏d

i=1(0,Mi + 1] and L > 0. Assume that W ◦ is such that W ◦
i is of

order greater than or equal to Mi . Then, our estimation procedure f̂ ani is such that:

lim sup
n→+∞

n
s̄

2s̄+1 sup
f ∈Ss,p(L)

R
(p,q)
n

(
f̂ ani, f

)
< +∞.

Moreover, if s = (s1, . . . , sd) is such that any si is not an integer, the following property is satisfied:

lim inf
n→∞ n

s̄
2s̄+1 inf

f̃

sup
f ∈Ss,p(L)

R
(p,q)
n (f̃ , f ) > 0,

where the infimum is taken over all possible estimators.

Theorems 3 and 4 are the analogues of Theorems 1 and 2 respectively, transposed to the isotropic estimation procedure.
Note however that the scale of functional classes considered in Theorem 4 is huge since there is no restriction on the
smoothness parameter s > 0, contrary to classical results (including Theorem 2).

Theorem 3. Assume that f : �d → R is a density function such that ‖f ‖∞ ≤ F∞. Then there exists a positive
constant K2 that depends only on F∞, p, q and τ , such that, for any n ≥ 2:

R
(p,q)
n

(
f̂ iso, f

)≤ K2 inf
�∈Liso

{
max
�′ ≥�

∥∥En
f f̂ iso

�′ − f
∥∥

p
+ ‖W(�)‖p∨2

(nVh(�))1/2

}
.

Theorem 4. Set s > 0 and L > 0. We have:

lim sup
n→+∞

n
s

2s+d sup
f ∈S̃s,p(L)

R
(p,q)
n

(
f̂ iso, f

)
< +∞

and, if s is not an integer,

lim inf
n→∞ n

s
2s+1 inf

f̃

sup
f ∈S̃s,p(L)

R
(p,q)
n (f̃ , f ) > 0,

where the infimum is taken again over all possible estimators.
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Remark 3. Theorems 2 and 4 are established for scales of Sobolev–Slobodetskii classes. However similar results are
still true if one replaces these classes with classical (an)isotropic Hölder classes. Remark also that the lower bounds
are proved for non-integer smoothness parameters. As mentioned above, in this situation, the Sobolev–Slobodetskii
classes correpond to usual Besov spaces.

In Theorems 1 and 3, the right hand sides of the equations can be easily interpreted. In both situations, the term
(nVh(�))

−1/2 is of the order of the standard deviation of f̂�. Moreover the terms max�′ ∈Lani ‖En
f f̂ ani

�′ − En
f f̂ ani

�∧�′ ‖p and

max�′ ≥� ‖En
f f̂ iso

�′ − f ‖p are linked with the bias of this estimator. More precisely, Proposition 4 and Proposition 5

ensure that these terms have the same behaviour as the bias term ‖En
f f̂� − f ‖p as soon as f belongs to Sobolev–

Slobodetskii classes.
Finally, to our best knowledge, even in the case of density with support in R, adaptive results in Lp without

restriction on the smoothness parameter as in Theorem 4 are not known for either the Sobolev–Slobodetskii classes or
the Hölder classes. This is not the case in Theorem 2 where the adaptive result is obtained only for s ∈∏d

i=1(0,Mi + 1]
where the Mi are the orders of the kernel W ◦. The main difference between the isotropic case and the anisotropic case
lies in the control of the quantity Bp(�) which is linked with the terms ‖Ef̂�′ − Ef̂�∧�′ ‖p for �′ ∈ L. In the isotropic
case, if �′ ≤ �, these terms vanish and it remains to control

max
�′ ≥�

‖Ef̂�′ − Ef̂�∧�′ ‖p ≤ 2 max
�′ ≥�

‖Ef̂�′ − f ‖p. (8)

The study of (8) involves Taylor expansion of f and each estimator f̂� can be based on a different kernel. In the
anisotropic case, (8) is never more valid and ‖Ef̂�′ − Ef̂�∧�′ ‖p can be expressed in terms of the difference of f in two
different values (in order to use a Taylor expansion) only when f̂�′ and f̂�∧�′ are based on the same kernel.

5. Proofs

The proofs of Theorems 1–4 are based on propositions and lemmas which are given below. Before stating these results,
we introduce some notation that are used throughout the rest of the paper. For W = (W1, . . . ,Wd) ∈ Wd , h ∈ Hn and
ε ∈ {0,1}d , we define the quantity:

�ε(W,h,p) =
{

2− d(2−p)
2p ‖W ‖2 if 1 ≤ p ≤ 2,

C∗
p(
ε(W,h,p) + 2‖W ‖p) if p > 2,

where


ε(W,h,p) =√Vh

(∫
�d,ε

(∫
�d

K2
W,h(t, x)f (x) dx

)p/2

dt

)1/p

.

For g : �d → R and r ≥ 1 we denote

‖g‖r,ε =
(∫

�d,ε

∣∣g(x)
∣∣r dx

)1/r

.

The process ξW,h is defined by

ξW,h(t) =
(

Vh

n

)1/2 n∑
j =1

(
KW,h(t,Xj ) − En

fKW,h(t,Xj )
)
, t ∈ �d.

Finally, for � ∈ L we define (using the generic notation for the isotropic and the anisotropic cases):

W ∗(�) =
(

(W1(�))
2

‖W1(�)‖2
2

, . . . ,
(Wd(�))2

‖Wd(�)‖2
2

)
.
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Proposition 4 (Anisotropic case). Set M = (M1, . . . ,Md) ∈ Nd . Assume that W ◦ is such that W ◦
i is of order greater

than or equal to Mi . Set s = (s1, . . . , sd) ∈∏d
i=1(0,Mi ] and L > 0. Then, for any f ∈ Ss,p(L):

∥∥En
f f̂ ani

� − f
∥∥

p
≤ 2d/p d

(
d∏

i=1

(Mi + 1)

)
L

d∑
i=1

(
hi(�)

)si . (9)

max
k∈Lani

∥∥En
f f̂ ani

k − En
f f̂ ani

�∧k

∥∥
p

≤ 21+d/p d

(
d∏

i=1

(Mi + 1)

)
L

d∑
i=1

(
hi(�)

)si . (10)

Proposition 5 (Isotropic case). Set s > 0 and L > 0. Then for any � ∈ Liso we have:

sup
f ∈S̃s,p(L)

max
�′ ≥�

∥∥En
f f̂ iso

�′ − f
∥∥

p
≤ K3

(∥∥W(�)
∥∥∞L

(
h1(�)

)s +
√

h∗
n

n

)
,

where the positive constant K3 depends only on d , p, s and L.

Proposition 6. Set p,q ≥ 1. Assume that f is such that ‖f ‖∞ ≤ F∞.

• Let � ∈ Liso. There exists a positive constant K4 that depends only on p, q , τ and F∞ such that

En
f

{∥∥f̂ iso
� − En

f f̂ iso
�

∥∥
p

− (1 + τ)M̂p(�)
}q

+ ≤ K4n
−q .

• Let � ∈ Lani. There exists a positive constant K5 that depends only on p, q , τ , W ◦ and F∞ such that

En
f

{∥∥f̂ ani
� − En

f f̂ ani
�

∥∥
p

− (1 + τ)M̂p(�)
}q

+ ≤ K5n
−q .

Lemma 3. Assume that f satisfies ‖f ‖ ∞ ≤ F∞. For any W ∈ Wd , r ≥ 1 and h ∈ Hn, we have:

En
f ‖ξW,h‖r,ε ≤ �ε(W,h, r) ≤ C0 ‖W ‖2∨r ,

where C0 is an absolute constant that depends only on r and F∞.

Lemma 4. Assume that f satisfies ‖f ‖ ∞ ≤ F∞. For any W ∈ Wd , r ≥ 1 and h ∈ Hn, we have:

P
(

‖ξW,h‖r,ε − En
f ‖ξW,h‖r,ε ≥ τ

2
�ε(W,h, r) + x

)
≤ exp

(
− C2x

2(αn(r))
−1

‖W ‖2
2∨r + x‖W ‖r

)
exp
(−C1αn(r)

)
,

where C1 and C2 are absolute constants that depend only on r , τ and F∞,

αn(r) =
{

(h∗
n)

−d( 2
r

−1) if 1 ≤ r < 2,

(h∗
n)

− d
r if r ≥ 2,

and h∗
n = exp(

√− logn).

We finally state the following lemma that allows us to bound the bias terms which appear in the oracle inequality.

Lemma 5. Let h = (h1, . . . , hd) and η = (η1, . . . , ηd) be two bandwidths in Hn such that ηi ∈ {0, hi }. Set W =
(wM1, . . . ,wMd

) ∈ Wd and define:

S∗
W,h,η(f ) =

(∫
�d,0

∣∣∣∣∣
∫

�d

(
d∏

i=1

wMi
(ui)

)[
f (t + h · u) − f (t + η · u)

]
du

∣∣∣∣∣
p

dt

)1/p

,
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where h · u denotes the coordinate-wise product of the vectors h and u. Assume that f belongs to Ss,p(L) and that,
for any i = 1, . . . , d , the kernel Wi is of order greater than or equal to �si �. Then we have:

S∗
W,h,η(f ) ≤ d

(
d∏

i=1

(Mi + 1)

)
L
∑
i∈I

h
si
i ,

where I = {i = 1, . . . , d : ηi = 0}.

5.1. Proof of Proposition 1

We note that:∫
�1

∣∣En
f0

f̂h(t) − f0(t)
∣∣p dt ≥

∫ δh

0

∣∣En
f0

f̂h(t) − 1
∣∣p dt. (11)

Now we remark that, for any t ∈ (0, δh), we have (t − 1)/h ≤ −1 which implies that:

En
f0

f̂h(t) =
∫
R

Kh(t − u)I(0,1)(u) du

=
∫ t/h

(t −1)/h

K(u)du

=
∫ t/h

−1
K(u)du.

Since t/h ≤ δ we obtain that in this situation En
f0

f̂h(t) ≤ 1 − γ . As a consequence, for any t ∈ (0, δh) we have:

f0(t) − En
f0

f̂h(t) ≥ γ.

Combining this inequality with (11) we obtain:∫
�1

∣∣En
f0

f̂h(t) − f0(t)
∣∣p dt ≥

∫ δh

0
γ p dt.

Proposition 1 follows.

5.2. Proof of Proposition 2

Let f ∈ � be a density function and let h ∈ (0,1/4). Using Jensen inequality we obtain for any t ∈ �1:∣∣En
f f̂h(t) − f (t)

∣∣p ≤ En
f

∣∣f̂h(t) − f (t)
∣∣p.

Integrating over �1 we obtain:∥∥En
f f̂h − f

∥∥
p

≤ R
(p,p)
n (f̂h, f ). (12)

Now, using the triangular inequality we have:∥∥f̂h − En
f f̂h

∥∥
p

≤ ‖f̂h − f ‖p + ∥∥En
f f̂h − f

∥∥
p
.

Using again the triangular inequality we obtain:(
En

f

∥∥f̂h − En
f f̂h

∥∥p
p

)1/p ≤ R
(p,p)
n (f̂h, f ) + ∥∥En

f f̂h − f
∥∥

p
. (13)
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Combining (12) and (13) we obtain:

3R
(p,p)
n (f̂h, f ) ≥ ∥∥En

f f̂h − f
∥∥

p
+ (En

f

∥∥f̂h − En
f f̂h

∥∥p
p

)1/p
.

Fixing f = f0 and using Theorem 1 (note that h ≤ 1/4 implies that h ≤ (1 + δ)−1) we obtain:

3R
(p,p)
n (f̂h, f0) ≥ (γ δ1/p

)
h1/p + (En

f0

∥∥f̂h − En
f0

f̂h

∥∥p
p

)1/p
. (14)

Now, it remains to bound the last term of the right hand side of this inequality. To this aim note that:

En
f0

∥∥f̂h − En
f0

f̂h

∥∥p
p

≥ En
f0

∫ 1−h

h

∣∣f̂h(t) − En
f0

f̂h(t)
∣∣p dt

≥
∫ 1−h

h

(
En

f0

∣∣f̂h(t) − En
f0

f̂h(t)
∣∣2)p/2

dt,

where the last line follows from Jensen inequality. Using that t ∈ (h,1 − h) and that Supp(K) ⊆ [−1,1] we obtain:

En
f0

f̂h(t) = 1.

This implies that for any t ∈ (h,1 − h):

En
f0

∣∣f̂h(t) − En
f0

f̂h(t)
∣∣2 = 1

n

(
Ef0K

2
h(t − X) − 1

)
= 1

nh

∫
R

K2(u)I(0,1)(t − hu)du − 1

n

= 1

nh

∫ 1

−1
K2(u) du − 1

n

≥ ‖K‖2
2

2nh
.

Last inequality holds since h ≤ 1/4 ≤ ‖K‖2
2/2 (using Cauchy–Schwarz inequality). Finally we obtain:

(
En

f0

∥∥f̂h − En
f0

f̂h

∥∥p
p

)1/p ≥
(

(1 − 2h)‖K‖2
2

2nh

)1/2

≥ ‖K‖2

2
(nh)−1/2 (15)

Last inequality holds since h ≤ 1/4. Now, combining (14) with (15) and minimizing with respect to h, Proposition 2
follows.

5.3. Proof of Proposition 4

We first prove (9). Set W = W ◦ and h = h(�). We have f̂ ani
� = f̃W,h and∥∥En

f f̃W,h − f
∥∥p

p
=
∑

ε∈ {0,1}d

∫
�d,ε

∣∣En
f f̃W,h(t) − f (t)

∣∣p dt

=
∑

ε∈ {0,1}d

∫
�d,ε

∣∣∣∣∫
�d

KW,h(t, x)f (x) dx − f (t)

∣∣∣∣p dt

=
∑

ε∈ {0,1}d

∫
�d,0

∣∣∣∣∫
�d

KW,h(u, y)fε(y) dy − fε(u)

∣∣∣∣p du, (16)
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where

fε(u) = f
(
. . . , ui(1 − εi) + (1 − ui)εi, . . .

)
.

Line (16) is obtained doing, for each ε ∈ {0,1}d , the changes of variables in both integrals, ti = ui(1 − εi) + (1 − ui)εi

and xi = yi(1 − εi) + (1 − yi)εi for all i ∈ {1, . . . , d}, and using that KW,h(t, x) = KW,h(u, y). As a consequence∥∥En
f f̃W,h − f

∥∥p
p

=
∑

ε∈ {0,1}d

(
SW,h(fε)

)p
,

where

SW,h(f ) =
(∫

�d,0

∣∣∣∣∫
�d

KW,h(t, x)f (x) dx − f (t)

∣∣∣∣p dt

)1/p

. (17)

Since f ∈ Ss,p(L) ⇐⇒ fε ∈ Ss,p(L), we obtain

sup
f ∈Ss,p(L)

∥∥En
f f̃W,h − f

∥∥
p

≤ 2d/p sup
f ∈Ss,p(L)

SW,h(f ).

Then Equation (9) follows from Lemma 5 and the fact that SW,h(f ) = S∗
W,h,0(f ).

Now, let us prove (10). Set h = h(k) and h′ = h(k ∧ �) = h(k) ∨ h(�). Similarly to (16) we have:

sup
f ∈Ss,p(L)

∥∥En
f f̃W,h − En

f f̃W,h′
∥∥p

p

≤ 2d sup
f ∈Ss,p(L)

∫
�d,0

∣∣∣∣∫
�d

KW,h(t, x)f (x) dx −
∫

�d

KW,h′ (t, x)f (x) dx

∣∣∣∣p dt

≤ 2d sup
f ∈Ss,p(L)

∫
�d,0

∣∣∣∣∣
∫

�d

(
d∏

i=1

Wi(ui)

)[
f (t + h · u) − f

(
t + h′ · u

)]
du

∣∣∣∣∣
p

dt.

Let η = (η1, . . . , ηd) be a bandwidth defined by

ηi =
{

0 if hi < h′
i ,

hi if hi = h′
i .

We have:

sup
f ∈Ss,p(L)

∥∥En
f f̃W,h − En

f f̃W,h′
∥∥p

p

≤ 2d+p sup
f ∈Ss,p(L)

max
H ∈ {h,h′ }

∫
�d,0

∣∣∣∣∣
∫

�d

(
d∏

i=1

Wi(ui)

)[
f (t + H · u) − f (t + η · u)

]
du

∣∣∣∣∣
p

dt.

Using Lemma 5, we obtain:

sup
f ∈Ss,p(L)

∥∥En
f f̃W,h − En

f f̃W,h′
∥∥

p
≤ 21+d/p d

(
d∏

i=1

(Mi + 1)

)
L max

H ∈ {h,h′ }
∑
i∈I

H
si
i ,

where I = {i : ηi = 0}. Since Hi ≤ hi(�) for any i ∈ I , this allows us to conclude.



1930 K. Bertin, S. El Kolei and N. Klutchnikoff

5.4. Proof of Proposition 5

In the same way that the proof of Proposition 4, we obtain:

sup
f ∈S̃s,p(L)

∥∥En
f f̂ iso

� − f
∥∥

p
≤ 2d/p sup

f ∈S̃s,p(L)

SW(�),h(�)(f ),

where SW(�),h(�)(f ) is defined by (17). We introduce the following notation:

k = k(�, s) =
{

�s� if m(�) ≥ �s�,

m(�) otherwise,

and

ς = ς(�, s) =
{

s if m(�) ≥ �s�,

m(�) + 1 otherwise.

Remark that, using this notation the kernel wm(�) is of order greater than or equal to k and ς ≤ s. Moreover, using
classical embedding theorems (see Di Nezza et al. [16]), there exists a positive constant L̃ that depends only on L, s

and p, such that for ς ∈ {2, . . . , �s�}, we have S̃s,p(L) ⊂ S̃ς,p(L̃). For ς = s we also denote L̃ = L.
Now, denoting h = h(�) and using a Taylor expansion of f , we obtain:

SW(�),h(�)(f ) ≤ (k ∨ 1)
∥∥W(�)

∥∥∞

(∑
|α|=k

Iα

)1/p

,

where

Iα = hpk

∫
�d,0

∫
�d

∫ 1

0

∣∣(Dαf (t + τhu) − Dαf (t)
)∣∣p dτ dudt

≤ hpk

∫
�d,0

∫
�d

∫ 1

0
‖hu‖d+p(ς −k)

2
|Dαf (t + τhu) − Dαf (t)|p

‖τhu‖d+p(ς −k)

2

dτ dudt

≤ d(d+p)/2hpς

∫ 1

0

∫
�d,0

∫
�d

|Dαf (x) − Dαf (t)|p
‖x − t ‖d+p(ς −k)

2

dx dt dτ

≤ d(d+p)/2L̃phpς .

We thus obtain∥∥En
f f̂� − f

∥∥
p

≤ [C(d,p, s)
∥∥W(�)

∥∥∞
]
L̃hς , (18)

where

C(d,p, s) = (2dd
d+p

2
)1/p(�s� ∨ 1

)
.

If m(�) ≥ �s�, since L̃ = L and ς = s, we deduce from (18) that:∥∥En
f f̂� − f

∥∥
p

≤ [C(d,p, s)
∥∥W(�)

∥∥∞
]
L
(
h(�)
)s

. (19)

Assume now that m(�) < �s�. Then ς = m(�) + 1 and (18) writes∥∥En
f f̂ iso

� − f
∥∥

p
≤ [C(d,p, s)

∥∥W(�)
∥∥∞
]
L̃
(
h(�)
)m(�)+1

.
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Remark that(
h(�)
)m(�)+1 = exp

(−�
(
m(�) + 1

))
≤ exp

(
−�

(
logn

2�
+ 1

2

))

≤
√

h∗
n

n
.

Thus, using Lemma 2, for m(�) < �s� we obtain:

∥∥En
f f̂ iso

� − f
∥∥

p
≤ [C(d,p, s)

(�s� + 1
)3d/2]

L̃

√
h∗

n

n
. (20)

Combining (19) and (20) we obtain the proposition.

5.5. Proof of Proposition 6

In the following, L is either Lani or Liso and f̂� then denotes f̂ ani
� or f̂ iso

� . Let � ∈ L. We define

Mp(�) = 1√
nVh(�)

∑
ε∈ {0,1}d

�ε

(
W(�),h(�),p

)
.

First, assume that 1 ≤ p ≤ 2. In this case Mp(�) = M̂p(�), which implies that

En
f

{∥∥f̂� − En
f f̂�

∥∥
p

− (1 + τ)M̂p(�)
}q

+ ≤ Ap,q(�),

where

Ap,q(�) = En
f

{∥∥f̂� − En
f f̂�

∥∥
p

− (1 + τ/2)Mp(�)
}q

+.

Next, assume that p > 2. Consider the event

D� =
{ ∑

ε∈ {0,1}d

‖ξW ∗(�),h(�)‖1/2
p/2,ε ≤ δ2d(nVh(�))

1/4
}

(21)

with δ = τ
2(1+τ)

. We have{∥∥f̂� − En
f f̂�

∥∥
p

− (1 + τ)M̂p(�)
}

+
= {∥∥f̂� − En

f f̂�

∥∥
p

− (1 + τ)M̂p(�)
}

+ID�

+ {∥∥f̂� − En
f f̂�

∥∥
p

− (1 + τ/2)Mp(�) + (1 + τ/2)Mp(�) − (1 + τ)M̂p(�)
}

+ID̄�

≤ {∥∥f̂� − En
f f̂�

∥∥
p

− (1 + τ/2)Mp(�)
}

+
+ (1 + τ/2)Mp(�)ID̄�

+ {∥∥f̂� − En
f f̂�

∥∥
p

− (1 + τ)M̂p(�)
}

+ID�
.

Last inequality is true since M̂p(�) ≥ 0. This implies:

En
f

{∥∥f̂� − En
f f̂�

∥∥
p

− (1 + τ)M̂p(�)
}q

+ ≤ 3q−1(Ap,q(�) + Bp,q(�) + Cp,q(�)
)
,

where

Bp,q(�) = (1 + τ/2)q
(
Mp(�)

)qPn
f (D̄�)
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and

Cp,q(�) = En
f

({∥∥f̂� − En
f f̂�

∥∥
p

− (1 + τ)M̂p(�)
}q

+ID�

)
.

Control of Ap,q(�). Remark that

Ap,q(�) ≤ En
f

{ ∑
ε∈ {0,1}d

∥∥f̂� − En
f f̂�

∥∥
p,ε

− (1 + τ/2)�ε(W(�),h(�),p)√
nVh(�)

}q

+

≤ 2d(q−1)
∑

ε∈ {0,1}d

Iq,ε,

where

Iq,ε = En
f

{∥∥f̂� − En
f f̂�

∥∥
p,ε

− (1 + τ/2)�ε(W(�),h(�),p)√
nVh(�)

}q

+

Thus, using Lemma 3 and Lemma 4 with r = p we can write:

(nVh(�))
q/2Iq,ε = En

f

{‖ξW(�),h(�)‖p,ε − (1 + τ/2)�ε

(
W(�),h(�),p

)}q
+

≤ q

∫ +∞

0
yq−1Pn

f

(‖ξW(�),h(�)‖p,ε − (1 + τ/2)�ε

(
W(�),h(�),p

)
> y
)
dy

≤ q

∫ +∞

0
yq−1Pn

f

(
‖ξW(�),h(�)‖p,ε − En

f ‖ξW(�),h(�)‖p,ε >
τ

2
�ε

(
W(�),h(�),p

)+ y

)
dy

≤ q exp
(−C1αn(p)

)∫ +∞

0
yq−1 exp

(
− C2y

2(αn(p))−1

‖W(�)‖2
2∨p + y‖W(�)‖p

)
dy. (22)

Using Lemma 2, Condition (5) on m(�), we have for y ≥ 1

C2y
2(αn(p))−1

‖W(�)‖2
2∨p + y‖W(�)‖p

≥ C2y(βn(p))−1

2
,

where βn(p) = αn(p)(logn + 3/2)4d . Using this bound and doing the change of variable z = (βn(p))−1y in (22) we
obtain that

(nVh(�))
q/2Iq,ε ≤ C

(
βn(p)

)q exp
(−C1αn(p)

)
,

where C depends only on C2 p and q .
This implies that

Ap,q(�) = O
(
n−q
)
.

Control of Bp,q(�). Here, we consider p > 2.
Let � ∈ Lani. Since h(�) satisfies nVh(�) ≥ (logn)c, using Lemma 3, there exists N0 = N0(c, τ,F∞,W ◦) such that

for any n ≥ N0:

(1 + τ/2)�ε

(
W ∗(�), h(�),p/2

)≤ δ2(nVh(�))
1/2.

Let � ∈ Liso. Using Lemma 2 and 3, we have

(1 + τ/2)�ε

(
W ∗(�), h(�),p/2

)≤ (1 + τ/2)C0
∥∥W ∗(�)

∥∥
2∨ p

2
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≤ (1 + τ/2)C0

(‖W(�)‖4∨p

‖W(�)‖2

)2

≤ (1 + τ/2)C0
(
m(�) + 1

)2d

≤ (1 + τ/2)C0

(
logn

2�
+ 3

2

)2d

≤ 22d−1(1 + τ/2)C0

[(
logn

2�

)2d

+
(

3

2

)2d]

≤ 2−1(1 + τ/2)C0

[√
nVh(�)

(
n− 1

4d logn

�e−�/4

)2d

+ 32d

]
. (23)

Since the bandwidth h(�) satisfies nVh(�) ≥ (logn)c, this implies that � ≤ �max where

�max =
[

1

d
(logn − c log logn)

]
.

As a consequence

n− 1
4d logn

�e−�/4
≤ max

(
n− 1

4d logn

e−1/4
,

n− 1
4d logn

�maxe−�max/4

)

≤ max

(
n− 1

4d logn

e−1/4
, (logn)− c

4d
logn

�max

)
. (24)

Using nVh(�) ≥ (logn)c , (23) and (24), we deduce that there exists N0 = N0(c, τ,F∞, δ) such that for any n ≥ N0:

(1 + τ/2)�ε

(
W ∗(�), h(�),p/2

)≤ δ2(nVh(�))
1/2.

As a consequence (in both cases � ∈ Lani and � ∈ Liso), we have for n ≥ N0

P(D�) ≤
∑

ε∈ {0,1}d

Pn
f

(‖ξW ∗(�),h(�)‖ p
2 ,ε ≥ δ2(nVh(�))

1/2)
≤
∑

ε∈ {0,1}d

Pn
f

(‖ξW ∗(�),h(�)‖ p
2 ,ε ≥ (1 + τ/2)�ε

(
W ∗(�), h(�),p/2

))
≤ 2d exp

{−C1αn(p/2)
}
, (25)

where the last line is a consequence of Lemma 3 and 4. Then, using that nVh(�) ≥ (logn)c, we have

Bp,q(�) ≤ C(logn)−q/c exp
{−C1αn(p/2)

}
,

for some positive constant C that depends on τ , F∞, p and q (and W ◦ in anisotropic case). This leads finally to

Bp,q(�) = O
(
n−q
)
.

It remains to upper bound Cp,q(�) for q ≥ 1 and p > 2.
Control of Cp,q(�). Recall that p ≥ 2. Let us remark that

∣∣M̂p(�) − Mp(�)
∣∣=
∣∣∣∣ ∑
ε∈ {0,1}d

C∗
p ‖W(�)‖2

(nVh(�))1/2
Zε(�,p)

∣∣∣∣,
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where

Zε(�,p) =
(∫

�d,ε

(
En

fKW ∗(�),h(�)(t,X1)
)p/2

dt

)1/p

−
(∫

�d,ε

(
1

n

n∑
j =1

KW ∗(�),h(�)(t,Xj )

)p/2

dt

)1/p

.

We have

∣∣Zε(�,p)
∣∣=
∣∣∣∣∣√∥∥En

fKW ∗(�),h(�)(·,X1)
∥∥

p/2,ε
−
√√√√∥∥∥∥∥1

n

n∑
j =1

KW ∗(�),h(�)(·,Xj )

∥∥∥∥∥
p/2,ε

∣∣∣∣∣
≤ (nVh(�))

−1/4
∥∥ξW ∗(�),h(�)(·)∥∥1/2

p/2,ε
.

This implies that

∣∣M̂p(�) − Mp(�)
∣∣≤ C∗

p ‖W(�)‖2

(nVh(�))3/4

∑
ε∈ {0,1}d

∥∥ξW ∗(�),h(�)(·)∥∥1/2
p/2,ε

. (26)

Thus, under D� defined in (21) we have

∣∣M̂p(�) − Mp(�)
∣∣≤ 2dC∗

p ‖W(�)‖2

(nVh(�))3/4
δ(nVh(�))

1/4

≤ δMp(�),

M̂p(�) ≥ (1 − δ)Mp(�),

and, since (1 − δ)(1 + τ) = 1 + τ/2:

(1 + τ)M̂p(�) ≥ (1 + τ/2)Mp(�).

This implies that

Cp,q(�) ≤ Ap,q(�) = O
(
n−q
)
.

5.6. Proof of Theorem 1

First, we introduce the following notation: for any �, �′ ∈ Lani, we denote � � �′ if, for any i = 1, . . . , d , we have
�i ≤ �′

i . Let � ∈ Lani be an arbitrary multiindex. To simplify the notation, we use f̂� = f̂ ani
� and f̂ = f̂ ani.

Using the definition of B̂p(�), we easily obtain:

‖f − f̂ ‖p ≤ ‖f − f̂�‖p + ‖f̂�̂∧� − f̂�‖p + ‖f̂�̂∧� − f̂�̂‖p

≤ ‖f − f̂�‖p + B̂p(�̂) + (1 + τ)M̂p(�̂, �) + B̂p(�) + (1 + τ)M̂p(�, �̂).

Using the definition of �̂, we deduce:

‖f − f̂ ‖p ≤ ‖f − f̂�‖p + 2
(
B̂p(�) + (1 + τ)M̂p(�)

)+ 2(1 + τ)M̂p(� ∧ �̂)

≤ ‖f − f̂�‖p + 2B̂p(�) + 4(1 + τ)max
�′ ��

Mp

(
�′)+ 4(1 + τ)max

�′ ��

(
M̂p

(
�′)− Mp

(
�′)).

This implies that:

R
(p,q)
n (f̂ , f ) ≤ R

(p,q)
n (f̂�, f ) + 2

(
En

f B̂
q
p(�)
)1/q
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+ 4(1 + τ)
(

En
f max

�′ ��

∣∣M̂p

(
�′)− Mp

(
�′)∣∣q)1/q

+ 4(1 + τ)max
�′ ��

Mp

(
�′).

It remains to bound each term of the right hand side of this inequality.
1. Remark that, using the triangular inequality, we have:

B̂p(�) ≤ 2 max
�′ ∈L
{∥∥f̂�′ − En

f f̂�′
∥∥

p
− (1 + τ)M̂p

(
�′)}

+ + max
�′ ∈L
∥∥En

f f̂�′ − En
f f̂�∧�′

∥∥
p
.

This readily implies(
En

f B̂
q
p(�)
)1/q ≤ 2

∑
�′ ∈L

(
En

f

{∥∥f̂�′ − En
f f̂�′
∥∥

p
− (1 + τ)M̂p

(
�′)}q

+
)1/q

+ max
�′ ∈L
∥∥En

f f̂�′ − En
f f̂�∧�′

∥∥
p

≤ 2K1/q

5 (#L)n−1 + max
�′ ∈L
∥∥En

f f̂�′ − En
f f̂�∧�′

∥∥
p
, (27)

where the last inequality follows immediately from Proposition 6.
2. For p ≤ 2, we have M̂p(�) − Mp(�) = 0.
Let p > 2. Here and in the following paragraph, C stands for a constant that depends on p, q , τ , F∞ and W ◦ and

that can change of values from line to line. Using (26), we obtain that for �′ � �∣∣M̂p

(
�′)− Mp

(
�′)∣∣≤ C∗

p ‖W ◦ ‖2

(nVh(�))1/2(nVh(�′))1/4

∑
ε∈ {0,1}d

∥∥ξW ∗(�′),h(�′)(·)∥∥1/2
p/2,ε

.

We have

En
f max

�′ ��

∣∣M̂p

(
�′)− Mp

(
�′)∣∣q ≤ En

f

{
max
�′ ��

∣∣M̂p

(
�′)− Mp

(
�′)∣∣qI⋂

�′ �� D�′
}

+
∑
�′ ��

En
f

{
max
�′ ��

∣∣M̂p

(
�′)− Mp

(
�′)∣∣qID�′

}
,

where the events D�′ are defined by (21). Then, using (25) and that h(�) ∈ Hn, we obtain for n large enough that

En
f max

�′ ��

∣∣M̂p

(
�′)− Mp

(
�′)∣∣q ≤

(
C∗

p ‖W ◦ ‖2δ2d

(nVh(�))1/2

)q

+
∑
�′ ��

(
C∗

p ‖W ◦ ‖ ∞2d+1√
Vh(�)(nVh(�))1/2

)q

P(D�′ )

≤
(

C∗
p ‖W ◦ ‖2δ2d

(nVh(�))1/2

)q

+
∑
�′ ��

(
C∗

p ‖W ◦ ‖ ∞2d+1 √
n

(logn)2d+1

)q

2d exp
{−C1αn(p/2)

}
.

Now since #L is bounded by (logn)d , we have(
En

f max
�′ ��

∣∣M̂p

(
�′)− Mp

(
�′)∣∣q)1/q ≤ C

(nVh(�))1/2
.

3. By using Lemma 3 we obtain

Mp(�) = 1√
nVh(�)

∑
ε∈ {0,1}d

�ε

(
W ◦, h(�),p

)
≤ C‖W ◦ ‖p∨2√

nVh(�)

. (28)
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This implies that for �′ � �

4 max
�′ ��

Mp

(
�′)≤ C√

nVh(�)

.

5.7. Proof of Theorem 2

The proof of this result is split into two main parts: the proof of the upper bound and the proof of the lower bound.
Upper bound. Set s ∈∏d

i=1(0,Mi + 1]. Define �∗(s) = (�∗
1(s), . . . , �

∗
d(s)) by:

�∗
i (s) =

⌈
s̄

si (2s̄ + 1)
logn

⌉
, i = 1 . . . , d,

where �x� denotes the least integer greater than or equal to x. Note that hi(�
∗) is such that

h∗
i (s)

e
≤ hi

(
�∗)≤ h∗

i (s), (29)

where

h∗
i (s) = n

− s̄
si (2s̄+1) .

This implies that there exists n0 = n0(s,p) ∈ N such that for any n ≥ n0 we have �∗ ∈ Lani.
Combining (29) with Proposition 4 and Theorem 1, the upper bound follows.
Lower bound. For the sake of simplicity we only prove the lower bound for anisotropic Sobolev–Slobodetskii

classes. Let (s1, . . . , sd) be a vector of positive real numbers and let L > 0. We also assume that si /∈ N. We intend to
prove that n−s̄/(2s̄+1) is the minimax rate of convergence over the class Ss,p(L). To do so, using Lemma 3 in Lepski
[26], we have to construct a family of density functions {fw : w ∈ W0 }, indexed by W0 � 0, that satisfies the following
properties:

(a) fw ∈ Ss,p(L), w ∈ W0

(b) ‖fw − fw′ ‖p ≥ 2ρn, w,w′ ∈ W0

(c) I = 1

|W|2

∑
w∈W

E0

(
n∏

k=1

fw

f0
(Xk)

)2

≤ a,

where |W| denotes the cardinality of W = W0 \ {0}. Under these assumptions we have:

lim inf
n→∞ inf

f̃

ρ−1
n sup

f ∈Ss,p(L)

(
En

f ‖f̃ − f ‖q
p

)1/q ≥ (
√
a + √

a + 1),

where the infimum is taken over all possible estimators. This implies the result. It remains to construct such a family.
The rest of the proof is decomposed into several steps.

Step 1. Here, we construct a finite set of functions used in the rest of the proof. We consider two auxiliary functions
ψ : R → R and H : R → R defined, for any u ∈ R by

ψ(u) = exp
(−1/

(
1 − u2))I(−1,1)(u) and H(u) = −I(−1,0) + I(0,1).

Using these functions, we define, for any u ∈ R, ϕ(u) = H � ψ(2u).
For any i = 1, . . . , d , we consider the bandwidth

hi = n
− s̄

2s̄+1
1
si
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and we set Ri = 1/(2hi). We assume, without loss of generality, that Ri is an integer. Let R =∏d
i=1 {0, . . . ,Ri − 1}

and define, for any r = (r1, . . . , rd) ∈ R, the function φr : �d → R by:

φr(x) =
d∏

i=1

ϕ

(
xi − x

(r)
i

hi

)
,

where x
(r)
i = (2ri + 1)hi . Finally, for any w : R → {0,1} we define:

fw = I�d
+ ρn

∑
r∈R

w(r)φr ,

where

ρn = c1n
− s̄

2s̄+1 with c1 = L

d�(s,p)�d

and

� = max
0≤k≤maxi �si �+1

∥∥ϕ(k)
∥∥∞ and �(s,p) =

(
6 · 2p

p(1 − σ)
+ 8
∑
k≥1

(2k)−(1+pσ)

)1/p

,

where σ = min{si − �si � : i = 1, . . . , d}.
Step 2. We intend to prove that, for n large enough, fw is a probability density that belongs to Ss,p(L).
(i) Remark that, for any u ∈ R, since ‖H ‖∞ ≤ 1, we have∣∣ϕ(u)

∣∣=
∣∣∣∣∫

R

H(2u − v)ψ(v)dv

∣∣∣∣
≤
∫ 1

−1
ψ(v)dv

≤ 2/e.

This impies that ‖φr ‖ ∞ ≤ (2/e)d for any r ∈ R. Moreover, note that:

Supp(φr) =
d∏

i=1

[
x

(r)
i − hi, x

(r)
i + hi

]
.

Thus, the Lebesgue measure of Supp(φr) ∩ Supp(φr ′ ) is null for r �= r ′. This implies that, for n large enough:

fw(x) ≥ 1 − ρn(2/e)d > 0, x ∈ �d.

(ii) Remark that ϕ is an odd function such that Supp(ϕ) = [−1,1]. This implies that
∫
R

ϕ(u)du = 0 which also
implies, using Fubini’s Theorem, that

∫
�d

φr(x) dx = 0 for any r ∈ R. As a consequence we have
∫
�d

fw(x)dx = 1.
Combining points (i) and (ii) we deduce that fw is a probability density for any w : R → {0,1}. It remains to prove

that fw belongs to the anisotropic class Ss,p(L).
(iii) Set i ∈ {1, . . . , d} and consider x, y ∈ �d such that xj = yj for any j �= i. For the sake of readability we denote

si = m + α with m = �si � ∈ N and 0 < α < 1. Remark that ϕ is an infinitely differentiable function. Thus:

Dm
i fw(x) − Dm

i fw(y) = ρn

∑
r∈R

∏
j �=i

ϕ

(
xj − x

(r)
j

hj

)
Dm

i

(
ϕ

(
xi − x

(r)
i

hi

)
− ϕ

(
yi − x

(r)
i

hi

))

= ρn

hm
i

∑
r∈R

∏
j �=i

ϕ

(
xj − x

(r)
j

hj

)(
ϕ(m)

(
xi − x

(r)
i

hi

)
− ϕ(m)

(
yi − x

(r)
i

hi

))
.
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This implies that:

∣∣Dm
i fw(x) − Dm

i fw(y)
∣∣≤ ‖ϕ‖d−1∞ ρn

hm
i

∑
r∈R

∣∣∣∣ϕ(m)

(
xi − x

(r)
i

hi

)
− ϕ(m)

(
yi − x

(r)
i

hi

)∣∣∣∣.
Denote As = [2shi, (2s + 2)hi ]. We have

Ii

(
Dm

i fw

)≤ ‖ϕ‖d−1∞ ρn

hm
i

(
Ri −1∑
s,t =0

∫
As

∫
At

|∑Ri −1
r=0 (ϕ(m)(

x−(2r+1)hi

hi
) − ϕ(m)(

y−(2r+1)hi

hi
))|p

|x − y|1+pα
dx dy

)1/p

≤ ‖ϕ‖d−1∞ ρn

hm
i

(ϒ + ϒ̃)1/p, (30)

where

ϒ =
Ri −1∑
s=0

∫
As

∫
As

|(ϕ(m)(
x−(2s+1)hi

hi
) − ϕ(m)(

y−(2s+1)hi

hi
))|p

|x − y|1+pα
dx dy

and

ϒ̃ = 2
Ri −1∑
s=0

Ri −1∑
t =0

|t −s|≥1

∫
As

∫
At

|ϕ(m)(
x−(2s+1)hi

hi
)|p

|x − y|1+pα
dy dx.

First we control ϒ .

ϒ ≤ ∥∥ϕ(m+1)
∥∥p∞ Ri −1∑

s=0

∫
As

∫
As

| x−y
hi

|p
|x − y|1+pα

dx dy

≤ ‖ϕ(m+1)‖p∞
h

pα
i

Ri −1∑
s=0

∫
As

∫ 2

−2
|u|p(1−α)−1 dudv

≤ ‖ϕ(m+1)‖p∞
h

pα
i

∫ 1

0

∫ 2

−2
|u|p(1−α)−1 dudv

≤ 21+p(1−α)‖ϕ(m+1)‖p∞
p(1 − α)

h
−pα
i . (31)

Now, we control ϒ̃ . Note that the sum over t can be decomposed into two different terms for |t − s| = 1 or
|t − s| ≥ 2.

First, remark that if x ∈ As , y ∈ At and |s − t | ≥ 2 then |x − y| ≥ 2(|s − t | − 1)hi . This implies that:

ϒ̃2 = 2
Ri −1∑
s=0

Ri −1∑
t =0

|t −s|≥2

∫
As

∫
At

|ϕ(m)(
x−(2s+1)hi

hi
)|p

|x − y|1+pα
dy dx

≤ 4
Ri −1∑
s=0

∑
k≥1

(2hi)
2 ‖ϕ(m)‖p∞

(2khi)1+pα

≤ 8‖ϕ(m)‖p∞
h

pα
i

∑
k≥1

(2k)−(1+pα). (32)
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Now, it remains to consider the case |s − t | = 1. Assume first that t = s + 1. We consider the point z = (2s + 2)hi

that satisfies: |x − z| ≤ |x − y|, |y − z| ≤ |x − y| and z ∈ As ∩ As+1. We can also remark that ϕ(m)((z − (2s +
1)hi)/hi) = 0. We this in mind remark that:

ϒ̃ +
1 = 2

Ri −2∑
s=0

∫
As

∫
As+1

|ϕ(m)(
x−(2s+1)hi

hi
)|p

|x − y|1+pα
dy dx

≤ 2
∥∥ϕ(m+1)

∥∥p∞ ∫
As

| x−z
hi

|p
|x − z|1+pα

dx dy

≤ 21+p(1−α)‖ϕ(m+1)‖p∞
p(1 − α)

h
−pα
i . (33)

In the same way for t = s − 1:

ϒ̃ −
1 = 2

Ri −1∑
s=1

∫
As

∫
As−1

|ϕ(m)(
x−(2s+1)hi

hi
)|p

|x − y|1+pα
dy dx

≤ 21+p(1−α)‖ϕ(m+1)‖p∞
p(1 − α)

h
−pα
i . (34)

Using that ϒ̃ = ϒ̃ +
1 + ϒ̃ −

1 + ϒ̃2 combined with (30), (31), (32), (33) and (34) leads to:

d∑
i=1

Ii

(
D

(�si �)fw

i

)≤ d�(s,p)�dc1 ≤ L,

which implies that fw is a probability density that belongs to Ss,p(L).
Step 3. To define the set W0 we introduce the following notations. Let

c2 = min

{
2−d

2 + 4 exp(2c2
1 ‖ϕ‖2d∞ )

,2p+1‖ϕ‖d
p,2−d/10

}

and define M =∏d
i=1 Ri = (2dVh)

−1 and m = c2V
−1
h . Without loss of generality we assume that both M and m ≥ 4

are integers. Using Lemma A3 in Rigollet and Tsybakov [33], there exists W ⊂ {w : R → {0,1}} such that:

• We have |W| ≥ 2−m(M/m − 1)m/2.
• For any w ∈ W we have:

|w| =
∑

r

w(r) = m

• For any w,w′ ∈ W , we have:∑
r∈R

∣∣w(r) − w′(r)
∣∣≥ m/2.

Then, define W0 = W ∪ {0}. Remark that the last point remains valid if one replaces W by W0 thanks to the second
point. Remark also that f0 ≡ I�d

.
(i) Let w and w′ in W0.

‖fw − fw′ ‖p = ρn

∥∥∥∥∑
r∈R

(
w(r) − w′(r)

)
φr

∥∥∥∥
p
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= ρn

(∑
s∈R

∫
Supp(φs)

∣∣∣∣∑
r∈R

(
w(r) − w′(r)

)
φr(u)

∣∣∣∣p du

)1/p

.

Using the fact that the functions φr and φs have disjoint supports for r �= s, we have:

‖fw − fw′ ‖p = ρn

(∑
s∈R

∣∣w(s) − w′(s)
∣∣p · ‖φs ‖p

p

)1/p

= ρn

(∑
r∈R

∣∣w(r) − w′(r)
∣∣)1/p

V
1/p
h ‖ϕ‖d

p

≥ ρn(c2/2)1/p ‖ϕ‖d
p

≥ 2ρn.

(ii) In what follows, we denote by E0 the expectation under the uniform distribution on �d , with density f0.

I = 1

|W|2

∑
w∈W

(∫
�d

f 2
w(x)dx

)n

≤ 1

|W|2

∑
w∈W

(∫
�d

(
1 + 2ρn

∑
r∈R

w(r)φr(x) + ρ2
n

∑
r,r ′ ∈R

w(r)w
(
r ′)φr(x)φr ′ (x)

)
dx

)n

≤ 1

|W|
(
1 + ρ2

nmVh‖ϕ‖2d
2

)n
.

Last inequality comes from the facts that
∫
�d

φr(x) dx = 0 and that the set Supp(φr) ∩ Supp(φr ′ ) is negligible (in
terms of Lebesgue measure) for r �= r ′. We thus obtain:

I ≤ exp(nρ2
nc2 ‖ϕ‖2d

2 − log
(|W|)

≤ exp

(
c2

1c2 ‖ϕ‖2d
2 n1/(2s̄+1) − m

2
log

(
1

4

(
M

m
− 1

)))
≤ exp

(
m

2

(
2c2

1 ‖ϕ‖2d
2 − log

2−d − c2

4c2

))
.

Using the definition of c2 we remark that the exponent is nonpositive. This implies that J ≤ 1. Taking all together, the
assumptions of Lemma 3 in Lepski [26] are satisfied. Theorem is then proved.

5.8. Proof of Theorem 3

Let � ∈ Liso. We have∥∥f − f̂ iso
∥∥

p
≤ ∥∥f − f̂ iso

�

∥∥
p

+ ∥∥f̂ iso
�̂∧�

− f̂ iso
�

∥∥
p

+ ∥∥f̂ iso
�̂∧�

− f̂ iso
�̂

∥∥
p
.

Note that if � ≥ �̂, then∥∥f − f̂ iso
∥∥

p
≤ ∥∥f − f̂ iso

�

∥∥
p

+ ∥∥f̂ iso
�̂∧�

− f̂ iso
�

∥∥
p

≤ ∥∥f − f̂ iso
�

∥∥
p

+ B̂p(�̂) + (1 + τ)M̂p(�̂, �)

≤ ∥∥f − f̂ iso
�

∥∥
p

+ B̂p(�̂) + (1 + τ)M̂p(�) + (1 + τ)M̂p(�̂)

≤ ∥∥f − f̂ iso
�

∥∥
p

+ 2
(
B̂p(�) + (1 + τ)M̂p(�)

)
.
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Last inequality comes from the definition of �̂. It is easily seen that the same bound remains valid if � ≤ �̂. This implies
that

R
(p,q)
n

(
f̂ iso, f

)≤ R
(p,q)
n

(
f̂ iso

� , f
)+ 2

(
En

f B̂
q
p(�)
)1/q

+ 2(1 + τ)
(
En

f

∣∣M̂p(�) − Mp(�)
∣∣q)1/q

+ 2(1 + τ)Mp(�).

Following the same arguments of the proof of Theorem 1 (see the second paragraph), we have

(
E
∣∣M̂p(�) − Mp(�)

∣∣q)1/q ≤ C
‖W(�)‖2

(nVh(�))1/2
. (35)

Applying (27), (28) and (35), we deduce the oracle inequality of Theorem 3.

5.9. Proof of Theorem 4

First, we prove the upper bound. Set s > 0. Define:

�∗(s) =
[

1

2s + d
logn

]
and h∗

n(s) = n− 1
2s+d .

We note that there exists n1 = n1(s,p) such that for any n ≥ n1 we have �∗(s) ∈ Liso and 1 ≤ logn
2(2s+d)

. Then we have

s ≤ m
(
�∗(s)

)≤ 2s + d + 1

2
(36)

and

h∗
n(s) ≤ h

(
�∗(s)

)≤ eh∗
n(s). (37)

Then using Lemma 2, (36) implies

max
(∥∥W (�∗(s)

)∥∥
2∨p

,
∥∥W (�∗(s)

)∥∥∞
)≤
(

2s + d + 3

2

)2d

. (38)

Using (37) and (38) in combination with Proposition 5 and Theorem 3 entail to the upper bound. To prove the lower
bound, the methodology and construction proposed in the proof of Theorem 2 are unchanged (we just consider si = s

for any i = 1, . . . , d). However it remains to prove that the functions fw defined previoulsely belong to the isotropic
Sobolev–Slobodetskii class S̃s,p(L). This is left to the reader.

5.10. Proof of Lemma 2

Let m ∈ N. Denote zm(u) =∑m
r=0 a

(m)
r ur . The solution of the minimization problem (3) can be found explicitly and

the Lagrangian condition implies the solution is zm. Now, for p = 2, remark that:

‖zm‖2
2 = (a(m)

)�
Hma(m) = (e(m)

0

)�
H −1

m e
(m)
0 = (m + 1)2.

Now we will prove that wm = zm. The polynomial zm can be decomposed in the basis {ϕr, r = 0, . . . ,m} as

zm(u) =
m∑

r=0

brϕr(u).
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Since zm is of order m, we have

br =
∫ 1

0
zm(u)ϕr(u) du = ϕr(0),

which implies that wm = zm.
Finally we have for u ∈ �1

∣∣wm(u)
∣∣≤

m∑
r=0

√
2r + 1

∣∣Qr(−1)
∣∣√

2r + 1
∣∣Qr(2u − 1)

∣∣
≤

m∑
r=0

2r + 1

= (m + 1)2

since |Qr(u)| ≤ |Qr(−1)| = 1. Moreover wm(0) = ∑m
r=0(2r + 1)(Qr(−1))2 = (m + 1)2 which implies that

‖wm‖ ∞ = (m + 1)2.

5.11. Proof of Lemma 3

Using Jensen inequality, we have

En
f ‖ξW,h‖2,ε ≤

(
Vh

n

)1/2
(∫

�d,ε

En
f

(
n∑

j =1

KW,h(t,Xj ) − En
fKW,h(t,Xj )

)2

dt

)1/2

≤√Vh

(∫
�d,ε

En
fK2

W,h(t,X1) dt

)1/2

≤
(∫

�d,ε

∫
�d

1

Vh

d∏
i=1

W 2
i

(
σ(ti)

ti − xi

hi

)
f (x)dx dt

)1/2

Then using a change of variables, we deduce

En
f ‖ξW,h‖2,ε ≤

(
‖W ‖2

2

∫
�d

f (x) dx

)1/2

≤ ‖W ‖2.

For r ≤ 2, since the Lebesgue measure of �d,ε equals to 2−d , we have using Hölder inequality

En
f ‖ξW,h‖r,ε ≤ 2− d(2−r)

2r En
f ‖ξW,h‖2,ε ≤ 2− d(2−r)

2r ‖W ‖2.

Let us now assume that r > 2. Using the Rosenthal inequality we have

En
f

∣∣ξW,h(t)
∣∣r ≤ (C∗

r

)r
(Vh)

r/2{(En
fK2

W,h(t,X1)
)r/2 + 2r+1n1−r/2En

f

∣∣KW,h(t,X1)
∣∣r}.

Using Jensen and Young inequalities we obtain:

En
f ‖ξW,h‖r,ε ≤

(∫
�d,ε

En
f

∣∣ξW,h(t)
∣∣r dt

)1/r

≤ C∗
r

{

ε(W,h, r) + 2‖W ‖r (nVh)

1
r

− 1
2
}

≤ C∗
r

{

ε(W,h, r) + 2‖W ‖r

}
.
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We have


ε(W,h, r) ≤F
1/2∞
(∫

�d,ε

(
Vh

∫
�d

K2
W,h(t, x) dx

)r/2

dt

)1/r

≤F
1/2∞ ‖W ‖2.

As a consequence, for all r ≥ 1, we have

�ε(W,h, r) ≤ C‖W ‖r∨2,

where C depends on F∞ and r .

5.12. Proof of Lemma 4

Let W ∈ Wd and h ∈ Hn. We denote by Br ′ the unit ball of Lr ′ (�d,ε) where 1/r + 1/r ′ = 1 and, for λ ∈ Br ′ , we
consider ḡλ defined, for x ∈ �d by:

ḡλ(x) = gλ(x) − En
f gλ(X1) with gλ(x) = V

1/2
h

∫
�d,ε

λ(t)KW,h(t, x) dt.

The variable Y = ‖ξW,h‖r,ε satisfies

Y = sup
‖λ‖r′ ,ε ≤1

∫
�d,ε

λ(t)ξW,h(t) dt

= sup
‖λ‖r′ ,ε ≤1

1√
n

n∑
j =1

ḡλ(Xj ).

Since the set Br ′ is a weakly-∗ separable space, there exists a countable set (λk)k∈N ∈ Br ′ such that

Y = sup
k∈N

1√
n

n∑
j =1

ḡλk
(Xj ).

We have

sup
k∈N

‖ḡλk
‖ ∞ ≤ 2 sup

k∈N

‖gλk
‖ ∞

≤ 2 sup
x∈�d

V
1/2
h sup

k∈N

‖λk ‖r ′,ε
∥∥KW,h(·, x)

∥∥
r,ε

≤ b(W,h, r), (39)

where

b(W,h, r) = b = 2‖W ‖rV
1/r−1/2
h .

For r < 2, using the Hölder inequality, we have

sup
k∈N

En
f g2

λk
(X1) = Vh sup

k∈N

∫
�d

(∫
�d,ε

λk(t)KW,h(t, x) dt

)2

f (x)dx

≤ Vh sup
k∈N

∫
�d

∥∥KW,h(·, x)
∥∥2

r,ε
‖λk ‖2

r ′,εf (x) dx

= V
2/r−1
h ‖W ‖2

r . (40)
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For r ≥ 2, using the Young inequality, we have

sup
k∈N

En
f g2

λk
(X1) ≤ F∞Vh sup

k∈N

∫
�d

(∫
�d,ε

KW,h(t, x)λk(t) dt

)2

dx

≤ F∞V
2/r
h ‖W ‖2

2r/(r+2). (41)

Combining (40) and (41), we deduce that

sup
k∈N

En
f g2

λk
(X1) ≤ σ 2(W,h, r), (42)

where

σ 2(W,h, r) = σ 2 =
⎧⎨⎩‖W ‖2

rV
2
r

−1
h if 1 ≤ r < 2,

F∞ ‖W ‖2
2r/(r+2)V

2
r

h if r ≥ 2.

Now, using the Bousquet inequality (see Bousquet [9]), and denoting �ε = �ε(W,h, r), we obtain for any x > 0:

P
(

Y − En
f Y ≥ �ετ

2
+ x

)
≤ exp

(
− x2

2σ 2 + b√
n
(�ε(

12+τ
3 ) + 2x

3 )

)

× exp

(
− τ�εx + �2

ε τ
2/4

2σ 2 + b√
n
(�ε(

12+τ
3 ) + 2x

3 )

)
. (43)

Note that, for any x > 0, we have

τ�εx + �2
ε τ

2/4

2σ 2 + b√
n
(�ε(

12+τ
3 ) + 2x

3 )
≥ �2

ε τ
2

4(2σ 2 + b�ε(12+τ)

3
√

n
)
.

This inequality holds due to the fact that the homography on the left hand side of the equation is an increasing function.
Using (39), (42) and the fact that if r ≤ r ′, ‖W ‖r ≤ ‖W ‖r ′ , we obtain that for r < 2

4(2σ 2 + b�ε(12+τ)

3
√

n
)

�2
ε τ

2
≤ c1(Vr)

2
r

−1 + c2(Vh)
1
r

− 1
2 /

√
n

≤ c1
(
h∗

n

)d( 2
r

−1) + c2
(
h∗

n

) d
r ,

where c1 and c2 are absolute positive constants that depend only on d , τ and r . For r ≥ 2, using Lemma 3, we have in
a similar way

4(2σ 2 + b�ε(12+τ)

3
√

n
)

�2
ε τ

2
≤ c3(Vr)

2
r + c4(Vh)

1
r

− 1
2 /

√
n

≤ c3
(
h∗

n

) 2d
r + c4

(
h∗

n

) d
r ,

where c3 and c4 are absolute positive constants that depend only on d , τ , F∞ and r . Finally, we deduce that

4(2σ 2 + b�ε(12+τ)

3
√

n
)

�2
ε τ

2
≤ c5
(
αn(r)

)−1
, (44)
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with c5 an absolute positive constant that depends only on d , τ , F∞ and r . Using (44) we obtain:

exp

(
− τ�εx + �2

ε τ
2/4

2σ 2 + b√
n
(�ε(

12+τ
3 ) + 2x

3 )

)
≤ exp

(−C1αn(r)
)
, (45)

where C1 is an absolute positive constant that depends only on r , τ and F∞.
Using Lemma 3, (39) and (42), we obtain that there exists an absolute constant c6 which depends only on F∞, τ

and r such that:

2σ 2 + b√
n

(
�ε

(
12 + τ

3

)
+ 2x

3

)
≤ c6αn(r)

(‖W ‖2
2∨r + x‖W ‖r

)
(46)

(43), (45) and (46), allow us to deduce the result of the lemma.

5.13. Proof of Lemma 5

Let (e1, . . . , ed) be the canonical basis of Rd and define

vi(u) = (t1 + η1u1, . . . , ti−1 + ηi−1ui−1, ti , ti+1 + hi+1ui+1, . . . , td + hdud).

We can write:

f (t + h · u) − f (t + η · u) =
d∑

i=1

f
(
vi(u) + hiuiei

)− f
(
vi(u) + ηiuiei

)
=
∑
i∈I

f
(
vi(u) + hiuiei

)− f
(
vi(u)

)
,

where I = {i = 1, . . . , d : ηi = 0}. Using a Taylor expansion of the function x ∈ R  → f (vi(u) + xei) around 0, we
obtain:

f (t + h · u) − f (t + η · u) =
∑
i∈I

�si �∑
k=1

Dk
i f
(
vi(u)

) (hiui)
k

k!

+
∑
i∈I

(hiui)
�si �

�si �!
∫ 1

0
(1 − τ)�si �−1[D�si �

i f
(
vi(u) + τhiui

)− D
�si �
i f

(
vi(u)

)]
dτ.

Using the facts that vi(u) does not depend on ui and that
∫
�1

Wi(y)yk dy = 0 for any 1 ≤ k ≤ �si �, Fubini’s theorem
implies that:

S∗
W,h,η(f ) =

(∫
�d,0

∣∣∣∣∣
∫

�d

(
d∏

i=1

Wi(ui)

)∑
i∈I

Ii(t, u,h) du

∣∣∣∣∣
p

dt

)1/p

,

where

Ii(t, u,h) = (hiui)
�si �

�si �!
∫ 1

0
(1 − τ)�si �−1[D�si �

i f
(
vi(u) + τhiui

)− D
�si �
i f

(
vi(u)

)]
dτ.

Using Jensen’s inequality and Fubini’s theorem we obtain that:

S∗
W,h,η(f ) = (d‖W ‖1

)1−1/p

(∫
�d

J (u,h)

∣∣∣∣∣
d∏

i=1

Wi(ui)

∣∣∣∣∣du

)1/p

,
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where J (u,h) =∑i∈I

∫
�d,0

|Ii(t, u,h)|p dt . Now, we study this last term:

J (u,h) ≤
∑
i∈I

∫
�d,0

(hiui)
1+psi

(�si �!)p
∫ 1

0

|D�si �
i f (vi(u) + τhiui) − D

�si �
i f (vi(u))|p

|τhiui |1+p(si −�si �)
dτ dt.

Using a simple change of variables, we obtain:

J (u,h) ≤
∑
i∈I

(hiui)
psi

(�si �!)p
∫

�d

∫ 1

0

|D�si �
i f (x1, . . . , xi−1, ξ, xi+1, . . . , xd) − D

�si �
i f (x)|p

|ξ − xi |1+p(si −�si �)
dξ dx.

Since ui ≤ 1 and f ∈ Ss,p(L) we have:

S∗
W,h,η(f ) ≤ d‖W ‖1κ(s)L

(∑
i∈I

h
psi
i

)1/p

.

This implies the result.
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