
HAL Id: hal-01950718
https://inria.hal.science/hal-01950718

Submitted on 11 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Thinking Like a Director: Film Editing Patterns for
Virtual Cinematographic Storytelling

Hui-Yin Wu, Francesca Palù, Roberto Ranon, Marc Christie

To cite this version:
Hui-Yin Wu, Francesca Palù, Roberto Ranon, Marc Christie. Thinking Like a Director: Film Editing
Patterns for Virtual Cinematographic Storytelling. ACM Transactions on Multimedia Computing,
Communications and Applications, 2018, 14 (4), pp.1-23. �10.1145/3241057�. �hal-01950718�

https://inria.hal.science/hal-01950718
https://hal.archives-ouvertes.fr

0

Thinking Like a Director: Film Editing Pa�erns for Virtual
Cinematographic Storytelling

HUI-YIN WU, North Carolina State University
FRANCESCA PALÙ, University of Udine
ROBERTO RANON, University of Udine
MARC CHRISTIE, University of Rennes 1, IRISA, INRIA

�is paper introduces Film Editing Pa�erns (FEP), a language to formalize �lm editing practices and stylistic
choices found in movies. FEP constructs are constraints, expressed over one or more shots from a movie
sequence that characterize changes in cinematographic visual properties such as shot sizes, camera angles,
or layout of actors on the screen. We present the vocabulary of the FEP language, introduce its usage in
analyzing styles from annotated �lm data, and describe how it can support users in the creative design of �lm
sequences in 3D. More speci�cally, (i) we de�ne the FEP language, (ii) we present an application to cra� �lmic
sequences from 3D animated scenes that uses FEPs as a high level mean to select cameras and perform cuts
between cameras that follow best practices in cinema and (iii) we evaluate the bene�ts of FEPs by performing
user experiments in which professional �lmmakers and amateurs had to create cinematographic sequences.
�e evaluation suggests that users generally appreciate the idea of FEPs, and that it can e�ectively help novice
and medium experienced users in cra�ing �lm sequences with li�le training.

CCS Concepts: •Computing methodologies → Animation; Virtual reality; •Human-centered com-
puting→ Interactive systems and tools; •Applied computing→ Media arts;

Additional Key Words and Phrases: �lm storytelling, editing, virtual cinematography, assisted creativity, 3D
animation

ACM Reference format:
Hui-Yin Wu, Francesca Palù, Roberto Ranon, and Marc Christie. 2018. �inking Like a Director: Film Editing
Pa�erns for Virtual Cinematographic Storytelling. ACM Trans. Multimedia Comput. Commun. Appl. 0, 0,
Article 0 (August 2018), 23 pages.
DOI: 0000001.0000001

1 INTRODUCTION
“Good artists borrow, great artists steal.” Cinematography o�en takes inspiration from other �lms.
Best practices for camera placement, movement, and editing have been wri�en into �lm textbooks,
and are used over and over again in movies in various genres, because they are e�ective in conveying
speci�c actions or emotions. �e same knowledge widely used in �lms can also bene�t storytelling
in 3D animated scenes, which are becoming increasingly popular, for example, to pre-visualize
�lms for reducing the cost and time on a real set, to pitch creative ideas, and to add cinematic
sequences to video games and educational media.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and the
full citation on the �rst page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permi�ed. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM. 1551-6857/2018/8-ART0 $15.00
DOI: 0000001.0000001

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 0, No. 0, Article 0. Publication date:
August 2018.

0:2 Hui-Yin Wu, Francesca Palù, Roberto Ranon, and Marc Christie

Cameras in �lms are deliberately placed to ensure spatial and temporal continuity, and guide the
audience’s interpretation of events. Figure 1 shows how changing the on-screen layout of characters
in shots conveys di�erent emotions. 3D animations can replicate similar stylistic pa�erns observed
in �lms. Such constructs are widely used to support the director’s intentions.

However, existing tools for creating 3D cinematic sequences do not ease the design and imple-
mentation of such constructs. Besides being typically quite complex to use, these tools are not
able to encode elements of �lm language, such as shot size (sizes of characters on the screen) or
on-screen regions, that are frequently used in �lm editing practice.

Fig. 1. By changing the camera angles, and hence the on-screen layout of characters, di�erent emotional
hints can be conveyed. Here the CG sequence replicates shots and edits observed in a real movie (film screen
shots from Pulp Fiction).

To provide a more creative support for 3D cinematography, we propose Film Editing Pa�erns
(FEP), a language to formalize �lm editing practices and common editing techniques (called idioms)
used in �lm, using vocabulary from �lm textbooks. FEP constructs are constraints expressed over
one or more shots that act on elements of visual style such as size, layout, and angle of actors on the
screen. For example, FEPs enable one to encode typical shot-reverse-shot pa�erns (i.e. switching
the camera between two people who are looking at each other, as in Figure 1) that are common
when �lming dialogues, with �ne control over actors’ position and size in the frame. In addition to
proposing such a language, we provide an algorithm that, given a set of FEPs applied to multiple
shots, is able to select the cameras for each shot that make the sequence conform to the speci�ed
FEPs.

To investigate the potential of our proposal, we have created a tool for shooting and editing 3D
animated sequences (i.e., a basic animated storyboarding / previsualization tool) where users, while
still having manual control over the edited sequence, can use FEPs as a way of rapidly experimenting
with creative and stylistic possibilities. To assess the acceptance and practical usefulness of our
approach, we have conducted an evaluation with both professional �lmmakers and amateurs with
li�le to no �lmmaking experience.

�e rest of the paper is organized as follows. Section 2 presents related work. We then provide
in Section 3 an overview of the FEP language with examples. Section 4 introduces automated �lm
analysis as a possible usage for FEPs, while Section 5 presents our editing tool and the algorithm

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 0, No. 0, Article 0. Publication date:
August 2018.

Thinking Like a Director: Film Editing Pa�erns for Virtual Cinematographic Storytelling 0:3

for solving FEP constraints over multiple shots. In Section 6, we present our user evaluation, and
in Section 7 we discuss the limitations of our work and future improvements.

2 RELATEDWORK
Various techniques have been developed to instill �lm knowledge into virtual cinematography
systems. In general, the approaches developed so far concentrate on how actors are arranged on
the scene (i.e. frame composition), basic �lm idioms, and continuity rules that de�ne how shots
can be ordered as to maintain spatial and temporal continuity, without confusing the viewer. Most
existing approaches do not consider stylistic editing choices over multiple shots.

Drucker [7] was one of the �rst to propose an idiom-like language for constraint-based cine-
matography that allows a smooth navigation of the camera through a complex virtual environment,
like a museum room. Other early examples include Christianson et al. [5], who introduced the
DCCL language for planning sequences of camera movements, and He et al. [11], who encoded
�lm idioms as �nite state machines. Bares [3] introduced a constraint-based system for camera
placement, gathering information about the occurring story events and making decisions on how to
best show the ongoing actions. Similarly, Bares et al. [4] developed a constraint-based approach to
framing and camera positioning for virtual cinematography, where the user can specify a number of
constraints on the depth, angle, distance, region, occlusion, and the system will �nd framings that
satisfy those constraints. Notably, the Prose Storyboard Language (PSL) [19] was designed based
on actual �lm practice on shot composition, including vocabulary for elements like size, region,
or movement. In the implementation by Galvane et al. [9] for autonomous camera steering and
composition, a search is conducted for camera positions based on PSL constraints. In a later work,
they use semi-Markov chains to optimize a number of parameters in camera shot and cut decisions
[10], motivated by �lm practice of evaluating narrative importance of actors, visual continuity, and
rhythm in the edits. �e approach developed by Lino et al. [16] is another example of a system
that is able to autonomously edit a sequence by choosing where to position cameras and how to
perform edits that conform to continuity rules. Recently, Leake et al.[14] proposed an automated
editing system that would interactively generate an edit, from a number of clips of a same dialogue
scene, based on idioms that best interpret the emphasis or desired feeling of the user. Compared to
existing idiom-based systems, our approach provides a vocabulary and syntax based on elements
of visual style in order to de�ne a range of idioms potentially larger than existing work.

In interactive storytelling, planning techniques [2] and [12] have proposed camera placement
algorithms that correspond to the current story context. Film idioms and their associated storytelling
meanings are encoded, and a planner chooses the best camera position for each event, while
optimizing transitions between shots to improve the �uency of the whole sequence. Elson and
Riedl [8] adopted the idea of blockings from �lm practice, which involves the absolute placement
of a number of characters and a camera in a non-occluded environment. �e database of blockings,
stages, and shots can be expanded. �e camera is placed in pre-calculated relative positions in
relation to the actors and stage, based on what is happening in the scene (e.g. how many actors are
involved, scene type, action type). Constraints are also placed on how shots can be sequenced to
avoid violating continuity rules.

�e vast majority of virtual cinematography systems developed so far are non-interactive, and
thus are not meant as tools to support users’ creativity, with some notable exceptions, e.g. [17],
which however only considers continuity rules between adjacent shots. A number of applications
in the market, mainly devoted to pre-visualization, allow a user to position cameras and perform
editing on 3D animated scenes. However, in these applications users need to control camera
positioning and editing at low level, and no knowledge of cinematography practices exist to assist

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 0, No. 0, Article 0. Publication date:
August 2018.

0:4 Hui-Yin Wu, Francesca Palù, Roberto Ranon, and Marc Christie

users in their task. �is kind of assistance would at least bene�t novice users, as shown by a
Wizard-of-Oz study conducted by Davis et al. [6], where novice �lmmakers could make fewer
editing errors by bene�ting from guidance about violated cinematography rules.

Our work is also related with computational techniques for �lm analysis work. With respect
to this, video and image processing currently have re�ned methods for shot boundary detection
[1] and genre analysis [18]. Scene and event boundaries provide information on how a �lm is
structured, while genre identi�es crucial emotional or story-archetype features. �is has strong
applications to categorization and recommendation systems of streaming services. Another aspect
of cinematographic analysis focuses on the aesthetics of framing composition such as detecting
shot types [20] or meaningful sequences using continuity rules [23][21].

Current approaches both in analytical and generative systems already address de�ning �lm
idioms and style over shot sequences. We hope to expand accessibility of �lm knowledge in
automated �lm analysis and creativity tools with a �lmmaking-friendly language that allows
�exible de�nition and expansion of �lm idioms that operate over multiple shots.

3 FILM EDITING PATTERNS
Film Editing Pa�erns (FEP) is a language to formalize �lm editing practices that span multiple
shots. More speci�cally, FEP constructs are constraints on the visual features of a sequence of
shots. �ese constructs are assembled from simple properties or relations that act on the visual
features of a single shot (framing properties), or on the relation between subsequent shots (shot
relations). In addition, one can restrict the length of shot sequences or require the presence of
certain sub-sequences. Hereina�er, for simplicity, we use the term FEP to denote either the language
or a construct built with the language. �e current language is extended from a previous version
published in [24]. Here, we de�ne the vocabulary of the language, and syntax of FEP.

3.1 Framing Properties
Framing properties de�ne how actors are arranged on-screen (the on-screen layout), using four
visual features: actors’ size , anдle , reдion, and number of actors . Each of these features has precise
de�nitions in �lm literature [26]. We adopt a broad de�nition of actors that incorporates humans,
animated creatures, and objects.

Size. Shorter shots (i.e., closer cameras for a given lens) display bigger actors, increasing their
importance; conversely, longer shots make the actors smaller and thus less important, or more in
relation with their environment. We use the 9 shot size scale [22] with the upper half body �lling
the frame as the median Medium Shot. Figure 2 shows all the shot sizes in the FEP language.

Angle. �e camera uses horizontal, vertical, and roll angles with respect to actors to convey inner
emotional states of actors, and express power relations between characters. For example, shooting
actors from a lower angle creates a feeling that they are powerful, towering over the audience,
whereas shooting actors from a high angle, with them looking up to the camera, gives the audience
a feeling of dominance over the actors. Roll angles, more rarely used, give o� a feeling of instability,
since the ground is not parallel to the frame. Figure 3 shows all the angles provided in the FEP
language.

Region. Framing region refers to how actors are arranged in the frame. Good arrangements
improve aesthetics and can convey the inner state of actors or relations between actors. Our
language provides a number of ways to describe the region of an actor in the frame:

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 0, No. 0, Article 0. Publication date:
August 2018.

Thinking Like a Director: Film Editing Pa�erns for Virtual Cinematographic Storytelling 0:5

Fig. 2. The nine framing sizes in the FEP language all appear in the same sequence in The Good, The Bad, and
the Ugly.

Fig. 3. Angles of characters on the screen can be categorized into vertical, horizontal, and roll angle.

• 9-split: the screen is split into three equal regions horizontally and vertically, and regions
are named R9 1 to 9, with R9 1 being the upper-le� of the frame, and R9 9 being the
lower-right, as labelled in red on the example in Figure 4.

• 4-split: the screen is split into two equal regions horizontally and vertically, and regions are
named R4 1 to R4 4, with R4 1 being the upper-le� quarter of the frame, and R4 4 being
the lower-right quarter, as labelled in blue on the example Figure 4.

• 3-split horizontal/vertical: the screen is split into three equal regions horizontally/vertically,
and named R3 UPPER, R3 MIDDLE VER, and R3 LOWER in a vertical split, and R3 LEFT ,
R3 MIDDLE HOR, and R3 RIGHT in a horizontal split, as indicated in the green labels on
the outer rim of Figure 4.

• 2-split horizontal/vertical: the screen is split into two equal regions horizontally/vertically,
named R2 UPPER and R2 LOWER in a vertical split, and R2 LEFT and R2 RIGHT in a
horizontal split, as indicated in the yellow labels on the outer rim of Figure 4.

�e regions are visualized in Figure 4. To decide the region, we focus on the most impor-
tant aspects of actors: their head and eye positions, and possibly limb positions in scenes with
interactions.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 0, No. 0, Article 0. Publication date:
August 2018.

0:6 Hui-Yin Wu, Francesca Palù, Roberto Ranon, and Marc Christie

Fig. 4. The region in which actors appear can be described based on a 4-split (blue lines) or 9-split (red lines)
of the screen. They can also be described in terms of the 2 or 3 split of the screen vertically and horizontally.
As an example, the nose of Jennifer Lawrence (the right-most actor) can be described as appearing in the
regions R4 2, R9 3, R2 RIGHT , R2 UPPER, R3 UPPER, and R3 RIGHT (shot from Hunger Games movie).

Number of actors. �e number of actors indicates the relative importance of actors in the shot.
If each shot conveys equal amount of information, the more actors there are on-screen, the less
important each of them is to the current event.

3.2 Shot Relations
Shot relations establish relationships between framing properties of two or more shots, like size,
angle, or region. For example, we may describe a shot sequence that moves gradually closer to
actors; or a shot sequence where actors appear in the same region in the frame. Shot relations
provide FEP with the ability to de�ne sequences following such constraints.

Fig. 5. A shot size relation can be relatively further (longer distance between actor and camera), closer (shorter
camera-actor distance), or the same (screenshots from the film Ga�aca).

Size. Changing the size from one shot to another can show the di�erence in importance of actors
in the scene, as well as intensify or relax the atmosphere by moving closer or further to actors
respectively. �e Size relations can be closer, further, or remain the same. Examples of size relations
can be seen in Figure 5.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 0, No. 0, Article 0. Publication date:
August 2018.

Thinking Like a Director: Film Editing Pa�erns for Virtual Cinematographic Storytelling 0:7

Fig. 6. Example of shot angle relation being relatively higher or lower. The red line in the figures is a rough
estimate of the horizon for illustration purposes (screenshots from the film The Hunger Games).

Angle. Changing angles between shots can imply the relative strength of di�erent actors, or
change of emotional state for one actor. Angle relations can be either higher, lower, or the same.
Examples of angle relations can be seen in Figure 6.

Fig. 7. Example of region relations between two successive shots (same region on the le�, di�erent regions
on the right). Shots from Infernal A�airs.

Region. When actors appear in the same regions on the screen across shots, it o�en means
an agreement, compassion, or mutual recognition, while laying out actors across the horizontal
axis (i.e. le� and right) carries the meaning of opposition. Region relations can be same or di�,
with respect to the 9-split , 4-split , or horizontal/vertical in 2- and 3-split standard. Examples of
horizontal region relations can be seen in Figure 7.

Actors. Two consecutive shots can show the same actors (such as to narrate a continuous action
that an actor is carrying out) or di�erent actors to show a connection between two actors. Our
language de�nes that actor relations can either be actor-same or actor-di�erent.

Continuity. Continuity rules ensure that the audience maintains spatial and temporal continuity
from one shot to another. For example, the motion continuity rule states that if something is
moving from the le� to the right on the screen, it should still move le� to right on the screen in
the next shot. Another rule is the 180 degree rule, which states that when �lming two actors, the
camera should always stay on the same side of the line formed by the two actors (thus, in the same
180 degree range) maintaining their relative le�/right positions. �e line is referred to as the index
line, and helps to ensure index continuity.

�ough they are less systematically applied in modern �lms, we still provide a de�nition of most
common rules as well as the vocabulary in the FEP language to express relations onmotion/index
continuity/discontinuity. Examples are provided in Figure 8.

3.3 FEP Language Syntax
Using the FEP vocabulary, we can de�ne a variety of FEP constructs which correspond to actual
�lmmaking idioms. A FEP construct can contain multiple framing properties and shot relations,
plus constraints on the length of a sequence (in terms of number of shots), or on the presence of a

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 0, No. 0, Article 0. Publication date:
August 2018.

0:8 Hui-Yin Wu, Francesca Palù, Roberto Ranon, and Marc Christie

Fig. 8. Continuity relations help the audience maintain spatial and temporal continuity between two shots.
Index continuity keeps the camera on the same side of the index line between two actors, maintaining the
relative on-screen positions of actors, while motion continuity maintains the actor’s direction of motion
on-screen. In violation of these rules, the actor positions and motions are sometimes discontinuous from one
shot to another (screenshots from the films Ga�aca, The Shining, The Curious Case of Benjamin Bu�on, and
The Constant Gardener).

certain sub-sequence. �is section presents the incremental construction of the intensify FEP–an
editing technique where the camera gradually approaches the actors over a number of shots–to
illustrate how a FEP construct is structured.

intensify{
size-relation: closer

}

�is FEP, which applies to sequences of any number of shots, states that all shots must have a shot
size relatively shorter than the previous shot. �is de�nition of intensify would be able to match a se-
quence of shot sizes like [Long][Medium][Close-up], but it would reject [Long][Medium][Medium]
[Close-up], since the two middle shots are not closer in relation. Yet, a �lm analyst would still
consider this an intensify, since the shot size gradually increases over the whole sequence.

To overcome this limitation, we introduce the concept of embedded sub-sequences. Embedded
sub-sequences are continuous sequences of shots that follow the constraints of some FEP, such
that these shots can be grouped together in a parent FEP. In other words, individual shots in the
sub-sequence are not evaluated by the relation set by the parent FEP. Using this concept, the
de�nition of intensify becomes:
intensify{
size-relation: closer
sub-sequence: same-size{

size-relation: same
}

}

In this case, the above-described sequence would be considered as intensify. If not speci�ed, the
sub-sequence is a single shot.

If the user would like a constraint to be enforced on speci�c shots or sub-sequences (e.g. shots
1, 3 should be Close Ups, and 2, 4 should be Long Shots), this can be achieved by se�ing ranges.
�e range parameter can either be continuous [x-y], discrete < x ,y, z... >, or one of the keywords

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 0, No. 0, Article 0. Publication date:
August 2018.

Thinking Like a Director: Film Editing Pa�erns for Virtual Cinematographic Storytelling 0:9

between initial (equal to < 1 > in the discrete list representation), all (all sub-sequences), none
(a strong negating constraint on all sub-sequences), or end (the last sub-sequence). By default,
the range of a constraint is all . With ranges, we can re�ne our de�nition of intensify to add the
requirement that the �rst shot is a Medium Shot (MS):

intensify{
framing-size: MS (range: initial)
size-relation: closer (range: all)
sub-sequence: same-size{

size-relation: same (range: all)
}

}

Length. We can also restrict the length of an FEP, which checks the number of sub-sequences–and
not the number of shots–in the sequence. Here we add a length constraint to intensify:

intensify{
length: >= 3
sub-sequence: same-size{

length: >= 1
sub-sequence: shot{

size-relation: same (range: all)
}

}
size-relation: closer (range: all)

}

We can �exibly limit a sub-sequence to a single shot or an embedded FEP, creating complex
FEPs that capture recurring changes over sequences. Since the evaluation of relations allows
observations only between sub-sequences, the number of sub-sequences on which a relation
constraint is evaluated is much more meaningful than the actual number of shots in the FEP.

3.4 Examples of Common FEPs
�e FEP language provides a rich and �exible vocabulary to de�ne a number of stylistic rules or
conventions directors commonly use in their �lms. Here we present some examples of �lming and
editing techniques from �lm textbooks de�ned using our FEP constructs.

3.4.1 Composition and Continuity Rules.

Rule of thirds. A common framing composition rule for both �lm and photography that states
the main character’s head (or main target object) must appear in the upper-third of the frame.

rule-of-thirds{
length: >= 1
framing-region: R3_UPPER (range: all)

}

Figure 4 is a good demonstration of the rule of thirds, where all three main characters’ heads
appearing on the upper third of the framing.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 0, No. 0, Article 0. Publication date:
August 2018.

0:10 Hui-Yin Wu, Francesca Palù, Roberto Ranon, and Marc Christie

180 degree rule. �e classical continuity rule of not crossing the index line formed by two
characters can be applied directly.

180-degree{
length: >= 2
index-relation: match-index (range: all)

}

�e visual e�ect of following and violating the rule are shown in Figure 8.

3.4.2 Stylistic FEPs. From �lm textbooks, we identi�ed �ve commonly used FEPs that are used
in �lm storytelling, to invoke certain emotions among viewers, such as intensify, introduced in the
previous section. Examples of all �ve FEPs can be seen in a clip from Hunger Games in Figure 9.

Fig. 9. Five FEPs with examples from an extracted film clip from Hunger Games: intensify, frameshare,
opposition, shot-reverse-shot, and same size.

Here we provide the de�nitions of the four stylistic FEPs using the syntax described above.

Same-size. Actors appear the same size on screen over a sequence of 2+ shots. Used in dialogues
and calm situations.

same-size{
length: >= 2
size-relation: same (range: all)

}

Opposition. Actors appear individually in opposite horizontal regions over a sequence of 2+ shots.
Used to express enmity, disagreement between the actors.

opposition{
length: >= 2
region-relation: R2_HOR_Diff (range: all)
framing-actor-num: ==1 (range: all)

}

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 0, No. 0, Article 0. Publication date:
August 2018.

Thinking Like a Director: Film Editing Pa�erns for Virtual Cinematographic Storytelling 0:11

Frameshare. Actors appear individually in the same horizontal regions over a sequence of 2+
shots. Used to express agreement or compassion between the actors.

frameshare{
length >= 2
region-relation: R2_HOR_Same (range: all)
framing-actor-num: ==1 (range: all)

}

Shot-reverse-shot. Two di�erent actors appear individually in two consecutive shots of the same
size with both actors looking o� screen in opposite directions to indicate that they perceive
each other. Shot-reverse-shot is a complex pa�ern with a strong psychological aspect (i.e. gaze,
perception). Without story context or a 3D reconstruction of the scene, there is no way to know
if two actors are actually looking at each other, but the framing aspect of the technique can be
modelled as:

shot-reverse-shot{
length: == 2
size-relation: same (range: all)
actor-relation: actor-different (range: all)
framing-actor-num: == 1 (range: all)

}

�e example in Figure 9 shows that directors frequently overlap FEPs to communicate complex
emotions and meanings throughout the �lm. Table 1 summarizes these �ve FEPs.

Table 1. Summary of the 5 stylistic FEPs.

FEP length description usage
Same-size 2+ shots actors are the same-size across shots dialogue, calm scenes
Intensify 3+ sub-sequences a sequence of shots moving gradually closer build emotion
Frameshare 2+ shots actors in the same horizontal region agreement, compassion
Opposition 2+ shots actors in opposite horizontal regions enimity, disagreement
Shot-Reverse-Shot 2 shots two actors looking at each other in two shots perception

4 FEP FOR FILM ANALYSIS
A �rst usage of FEP is �lm analysis on annotated �lm data. As an example, we can investigate
how much the FEPs presented in the previous section are employed in cinematography. To
do that, we have constructed a database of 22 clips, each of roughly 5 to 10 minutes in length,
from 18 well-known movies, spanning di�erent genres and a time frame between 1955 and 2012.
�e clips were usually the most memorable or famous sequences from each movie, based on
YouTube searches. In total, our database contains 1018 annotated shots, and is publicly available
at: h�ps://github.com/husky-helen/FilmAnnotation. �is data set was �rst published in [24] with
detailed analysis on FEP related features in [25]. Here we provide a broad overview of what the
database contains and how we have used FEPs to analyze these movie clips.

For each shot in the database, at least one framing was annotated, reporting:
• the frame number (from the �lm clip)
• list of all the actors in the framing
• the head, le� eye, and right eye positions of each character in the framing

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 0, No. 0, Article 0. Publication date:
August 2018.

https://github.com/husky-helen/FilmAnnotation

0:12 Hui-Yin Wu, Francesca Palù, Roberto Ranon, and Marc Christie

• other signi�cant body parts, such as hand, foot, when the head and eye positions were not
available

• non-animate objects crucial to the story
• the angle of the camera relative to the main character

�e head was annotated in terms of its size, position, and azimuth angle with respect to the
camera, while other elements were annotated for their on-screen x and y positions, respectively as
a ratio of the width and height of the frame space.

We can then use FEPs as a mean to analyze �lm style. We analyzed the database for occurrences
of four FEPs presented in the previous section: same-size, intensify, opposition, and frameshare. In
this analysis, shot-reverse-shot was le� out. Due to the di�culty in determining if two characters
are indeed looking at each other (as explained in the previous section), the FEP’s matches are
not that meaningful in this context, since they cannot con�rm nor indicate the psychological
connection between two targets.

As de�ned before, each FEP has (i) a set of framing properties, e.g. framing-size: MCU, (ii) a
set of shot relations, e.g. size-relation: closer, and (iii) a set of sub-sequence constraints, e.g.
sub-sequence: FEP, and represents a query that a user can perform over an annotated �lm clip.

�e solving process is an extension of the Knuth-Morris-Pra� algorithm [13], expressed as a
search over a sequence S of annotated frames. Since in our annotated data, multiple keyframes
are annotated in each shot, the �rst keyframe is selected to represent the shot in S. �e search
iterates through S and tries at each iteration to match the given FEP starting from frame i (where
1 < i < Card (S)). �e solver returns a set R = {r1, .., rn } of sub-sequences such that rn = [fI , fF]
where fI and fF represent respectively the starting and ending frames of the sequence that match
the FEP.

For the sake of performance (i.e. avoiding re-evaluation of the satisfaction of framing properties,
shot relations and sequence constraints), the search is run in two stages. �e �rst stage builds a
cache of valid solutions as three sets of frame sequences FC, RC and SC. �e �rst represents the sets
of frames that satisfy each of the framing properties mentioned in the FEP. �e second represents
the sets of successive frames [fi , fi+1] that satisfy the shot relations, and the last represents the set
of frame sequences SC = {s1, .., sm } where si = [fI , fF] and where fI and fF represent respectively
the starting and ending frames that satisfy the speci�ed sub-sequence.

�e search algorithm (FEPRecurse) relies on the function isValidFrame() to evaluate whether
the frame fi is within the set of valid frames FC. �e same process occurs with isValidRelation()
and isValidSubsequence(). �e function isValidSequence() simply checks that the given
length of the sequence is valid (since all frames, relations and subsequences are valid).

�en, in a second stage, the process iterates over all frames fi of the sequence S (see Algorithm 2).
At each iteration a double recursive depth search is performed from the current frame with a simple
idea: the next frame is retrieved from the sequence S , and if valid, is either considered as part of a
subsequence (see line 4) or part of the sequence (see line 6).

�e algorithm is then applied to our annotated database of clips. We found that all clips used at
least one of the four FEPs, with more than half of the shots in each clip using one or more FEPs.

ALGORITHM 1: FEPSearch (FEP p, Sequence S)
1 ResultSet R = ∅; while S not empty do
2 fi = f irst (S); FEPRecurse(p, ∅, S, i,R); S = S \ fi ;
3 end
4 return R

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 0, No. 0, Article 0. Publication date:
August 2018.

Thinking Like a Director: Film Editing Pa�erns for Virtual Cinematographic Storytelling 0:13

ALGORITHM 2: FEPRecurse (FEP p, CurrentSequence C, Sequence S, Index s, ResultSet R)
1 if S not empty then
2 fi = f irst (S); if isValidFrame(fi) AND isValidRelation(fi) then
3 if isValidSubsequence(p, C ∪ { fi }) then
4 FEPRecurse(p, C ∪ { fi }, S \ { fi }, s,R);
5 end
6 if isValidSequence(p, C ∪ { fi }) then
7 FEPRecurse(p, { fi }, S \ { fi } s,R ∪ {[s, i]});
8 end
9 end

10 end

Fig. 10. The percentage of shots that use each of the FEPs throughout the whole clip.

�is algorithm allows us to make quantitative observations on the evolution of average FEP
lengths (in terms of the number of shots in the sequence) over these �lm clips such as in Figure 11 or
the usage of these techniques over the entire dataset, as shown in Figure 10. On average, intensify
and same-size sequences can be much longer than any other FEP, applied to more than 5 shots in
the sequence, as seen in �e Good, the Bad, and the Ugly, American History X, and Pulp Fiction.

In the clip from Pulp Fiction, three types of sequences (intensify, same-size, and opposition) also
cover more than 80% of the shots in the clip, which clearly shows that all three techniques can be
used in parallel throughout a whole scene.

From this analysis, we can see that FEPs are very frequently used by �lm directors, and our
de�nition is �exible enough to successfully detect their occurrences in annotated �lm data.

5 FEP FOR INTERACTIVE EDITING
Having con�rmed that FEPs are indeed widely used in movies, we then designed an editing
application that assists the user in creating an edited sequence from a 3D animated scene, and
allows them to apply FEPs. More speci�cally, the application allows the user to:

• cut the animation sequence into a number of shots;

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 0, No. 0, Article 0. Publication date:
August 2018.

0:14 Hui-Yin Wu, Francesca Palù, Roberto Ranon, and Marc Christie

Fig. 11. Average length (in seconds) for all FEPs (embedded constraint pa�ern) used through shot sequences
in the film clips.

• for each shot, select a framing (i.e., a camera) among a framing database, which is dynami-
cally computed by the system on the basis of the 3D position of actors at the cut point (or
at any time inside the shot, chosen by the user);

• apply a FEP to a selection of shots in the sequence, and as a result, reduce the choice of
available framings to the ones that satisfy the FEP.

Any action of the user, for example selecting a certain framing for a shot, results in the system
re-applying the FEPs to ensure that the resulting sequence always satis�es them.

�e idea is that the user can creatively experiment with di�erent editing choices by thinking
in terms of stylistic choices, emotion building, and relations between actors, instead of worrying
about lower level aspects such as camera position and basic continuity rules.

Figure 13 shows the interface of the system, developed in Unity, which resembles popular editing
applications like Adobe Premiere of Final Cut Pro. For a demonstration of the application, please
view the accompanying video.

Fig. 12. Our system is composed of the interpreter for FEP vocabulary and the interactive solver. On the
system side, the inputs are the definitions for the FEPs and also annotated film data. Based on interactions
from the user, the solver then proposes framings for each shot in the sequence. The 3D environment geometry
is analyzed by the solver, and framing recommendations are returned to the user via the application interface.

At an architectural level, the system is composed of:
• the interpreter for the FEP language;
• a database of �lm framings, which considers situations with one or two actors at all possible

camera lengths and angles;

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 0, No. 0, Article 0. Publication date:
August 2018.

Thinking Like a Director: Film Editing Pa�erns for Virtual Cinematographic Storytelling 0:15

• a solver that: (i) computes actual framings based on the positions of actors in the scene at a
certain instant; (ii) restricts the possible framings to the ones that respect the constraints
de�ned in a speci�ed FEP.

Figure 12 provides an overview of the architecture of our system. In the following section, we
explain how the FEP solver works.

Fig. 13. The application we developed contains basic functions to edit a sequence and view the result in real
time. Framings are proposed for each shot (upper right corner), dynamically calculated from our framing
database and generally covering each actor in the scene, or their combination, at di�erent sizes and angles.
FEPs can be applied to a number of shots in the sequence in order to filter the framings to those that can
fulfill the applied pa�ern. In the figure, an intensify pa�ern has been applied to three shots.

5.1 FEP Solver
�e solver uses the Toric manifold method [15] which provides an algebraic computation of virtual
camera positions based on a number of desired visual features, such as size of actors on screen,
vantage angles, and on-screen position of one or two targets (e.g. two actors, or the le� and right
eye of the same actor). For example, we can compute a camera showing two actors, where one is
on the le� side of the frame, while the other is on the right side, and their heads are in the same
vertical region. We refer the reader to [15] for details on the calculation.

In this paper, we concentrate on the other function of the solver: given a list of FEPs applied to
speci�c shots, propose for each shot a selection of framings from the database that ful�ll all the
FEPs applied to the sequence. First, the solver initializes each shot with a list of candidate framings.

�e main algorithm of the solver (Algorithm 3) is a constraint propagation method that maintains
and updates an active list of FEP instances that are yet to be solved. Each FEP instance contains
an FEP and an ordered list of shots S[x,y] to which the FEP is applied. Algorithm 3 iterates on
the list of FEP instances, and incrementally �lters the framing candidates for each shot in the
FEP instance by calling Algorithm 4. �us at each iteration, Algorithm 3 produces the subset of
framing candidates that ful�lls the considered FEP instance and all the preceding FEP instances. If
Algorithm 4 removes framings in shots that overlap with other solved FEP instances, the constraints
must be propagated by adding those a�ected instances back to the active list of FEP instances so
that they can be re-solved. In this case, all overlapping FEP instances with p must be re-evaluated

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 0, No. 0, Article 0. Publication date:
August 2018.

0:16 Hui-Yin Wu, Francesca Palù, Roberto Ranon, and Marc Christie

Fig. 14. The solver is called to calculate an initial solution and in response to a user’s action. This figure
shows how the solver filters the available framings for intensify on a five shot sequence, where each shot has
the choice of a long (LS), medium (MS), and close-up shot (CU). In the initial solution, all framings that have
a path from the first shot to the last are validated. Three types of interactions can follow the initial solution:
(1) applying another FEP, same-size, to shots 3 and 4, the LS option is removed from shot 3 (2) deleting shot 4
from the sequence, the solver re-evaluates intensify for the remaining shots. (3) selecting a LS framing for Shot
3, shots 2 and 4 are filtered again to only allow framings that have a valid path through the LS framing of
Shot 3.

ALGORITHM 3: ConstraintPropagate (FEPInstanceList P)
1 FEPListCopy P’=P;
2 while P’.count!=0 do
3 FEPInstance e=P’.pop();
4 FEP p = e.FEP ;
5 ShotSequence S = e.S[x,y];
6 FEPFilter(p,EmptySet ,0,S);
7 forall FEPInstance ei ∈ P do
8 forall Shots s ∈ S do
9 if s∈ei.S[x,y] and ei<P’ then

10 P’.add(ei);
11 end
12 break ;
13 end
14 end
15 end

for each shot de�ned in S[x,y] to ensure that the changes made by Algorithm 4 still uphold for
the other overlapping FEPs. Algorithm 3 iterates either until there are no more FEPs in the list,
indicating all FEPs are solved, or until Algorithm 4 returns false, indicating that the combination of
FEPs cannot be solved.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 0, No. 0, Article 0. Publication date:
August 2018.

Thinking Like a Director: Film Editing Pa�erns for Virtual Cinematographic Storytelling 0:17

ALGORITHM 4: ReduceFramingSelection (FEP p, FramingSequence F, Position pos, ShotSequence S)
1 if pos¡=S.count then
2 forall Framings f ∈ Spos.candidateFramings do
3 F.add(f);
4 ReduceFramingSelection(p,F,pos+1,S);
5 F.remove(f);
6 end
7 end
8 else if ValidateFEP(p, EmptySet , F) then
9 forall Framings f in F do

10 f.validate();
11 end
12 end

Algorithm 4 evaluates each FEP, and reduces the framings selection among the candidate
framings for all shots sj ∈ S[x,y]. �e actual validation of constraints de�ned in FEP p is carried out
by Algorithm 5. We solve each FEP p by evaluating whether each frame in the whole sequence S[x,y]
ful�lls the framing and relation constraints, and whether the sequence can be split into a number
of sub-sequences that ful�ll the sub-sequence constraints (described in Section 3.3). Each possible
framing fi from the candidate framings must be either validated or rejected as a candidate for sj in
the considered FEP instance based on the following condition: if there exists a sequence of framings
fx , fx+1, ... fi , ... fy for each shot S[x,y] that ful�lls the constraints set by the FEP (Algorithm 5),
then fi is validated, which means the framing should be available for selection. If no combination
containing fi can be validated, then fi is rejected. At the end of the process, the remaining framings
for each shot are made available to the user for interactive selection.

Suppose there is a framing database of n framing speci�cations over a sequence ofm shots, the
complexity of the algorithm would be at the worst case nm , which makes the algorithm quite slow,
since it is a full search over all possibilities. However, typically users work with 2-3 shots at a time,
making the algorithm able to respond at interactive rates.

�e solver is called when a new FEP instance is added by the user, when shots are added or
removed from one or more FEP instances, or when a framing is selected for a shot in one ore more
FEP instances. �e solver reacts to these three types of actions as following:

A new FEP instance is added: When a new FEP e is added to a number of selected shots, e is
added to the FEPInstanceList P of Algorithm 3. If when solving e , the solver removes framing
propositions from shots with another FEP instance e ′, then e ′ is added to the FEPInstanceList P .
In this manner, the constraints of e are propagated to all other overlapping FEPs as well as those
indirectly overlapping. �us the solver continues to solve for each instance in P until the algorithm
converges, or until no solution can be found for a speci�c instance.

Adding/Removing of a cut or a shot: �e shot s is added/removed from the range of all overlapping
FEP instances, and all the FEP instances are pushed into the FEPInstanceList P in Algorithm 3 to be
re-evaluated. If no solution exists for an FEP, the FEP is removed. Each time an FEP is removed
or if the FEP removes proposed framings from a shot, all overlapping FEPs are pushed into the
FEPInstanceList P to be re-evaluated.

A framing Fm is selected for a shot Sn : Fm is set as a new constraint and propagated to overlapping
FEP instances. All framing proposals as well as selected framings for other shots must have a

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 0, No. 0, Article 0. Publication date:
August 2018.

0:18 Hui-Yin Wu, Francesca Palù, Roberto Ranon, and Marc Christie

ALGORITHM 5: ValidateFEP (FEP p, CurrentSequence C, Sequence F)
1 if F not empty then
2 fi = f irst (F);
3 if isValidFrame(fi) AND isValidRelation(fi) then
4 if isValidSubsequence(p, C ∪ { fi }) then
5 return ValidateFEP(p, C ∪ { fi }, F \ { fi });
6 end
7 else if isValidSequence(p, C ∪ { fi }) then
8 return ValidateFEP(p, { fi }, F \ { fi });
9 end

10 else
11 return False;
12 end
13 end
14 end
15 if ValidateLength(C) then
16 return True
17 else
18 return
19 end
20 False

validated path through Fm for Sn , which means in Algorithm 4, the list of candidate framings can
include only the user-selected framing when other shots would like to validate their candidate
framings. However, if we simply set Fm as a hard constraint by removing all other framings of
Sn from the candidate framings list, this would result in only one available framing Fm to select
from for Sn , preventing the user from changing to another framing that can also be validated by
the whole sequence. Instead, we would still want to be able to propose for Sn an augmented set of
framings where, despite not the selected framing of the user, still have a valid solution through
framings of other shots that have been validated by all other FEPs and constraints. To accommodate
this, we simply add an additional condition to Algorithm 5 to return true only when the FEP is
validated, and when all other framings in Sequence F are selected framings (where available). �is
allows us to “validate” a framing that is not selected by the user, but still contains a valid solution
in the sequence. �is also prevents other shots to use this augmented set to validate their own
framings, since Algorithm 5 will only return true when all other framings apart from the one at
Position pos of Algorithm 4 must be a selected framing, if the user has selected one. Figure 14
shows how a user action of selecting a framing for a single shot would trigger the solver, and what
the solver would do to uphold the FEPs on the new sequence.

6 USER EVALUATION
To assess the e�ectiveness and acceptability of using FEPs in editing tasks, we designed an experi-
ment in which participants were asked to use our application to produce an edited sequence of a
given animation. �e considered animation is a 3D reconstruction of a scene of 80 seconds taken
from the Robert Zemeckis� movie Back to the Future, composed of four main characters (Marty,
George, Goldie, Lou). �e animated scene faithfully reproduced the movements of the characters,
and included original audio from the movie, which was converted from stereo to mono, to avoid

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 0, No. 0, Article 0. Publication date:
August 2018.

Thinking Like a Director: Film Editing Pa�erns for Virtual Cinematographic Storytelling 0:19

any inconsistencies between audio cues (a character heard on the le�) and visual cues (the same
character framed on the right), hence enabling any editing choice.

�ere were a total of 17 participants: 6 experienced �lm professionals (4 of which had 10+ years
of experience in �lmmaking), and 11 amateur participants with only basic video editing experience.
�e participants’ ages were between 20 and 46. Two of the �lm professionals had experience with
3D animation so�ware, while most participants in the amateur group had some experience with
3D animation and graphics so�ware. All participants had previously seen the Back to the Future
movie, and could re-watch the selected clip before starting with the experiment.

6.1 Experimental procedure
First, participants were introduced to the experiment and were informally trained about FEPs by
showing examples of their application in well-known movies. �en, the functioning of the system
was brie�y explained, and a pre-evaluation survey, to collect demographic and user experience
information, was administered. We then showed them once the �lm original of the clip that they
were to edit. �is �rst part took about 15 minutes.

�en, participants were asked to produce their best edited sequence by starting from an initial
editing of the Back to the Future clip comprised of 23 shots (approximately one every 4-5 seconds),
where, for each shot, a random framing among the ones in the database was chosen. �e users
were asked to meet three criteria within the limitations of the tool:

(1) A framing must be selected for each shot
(2) the selected framing should express what is currently happening in the scene
(3) the overall edit should be coherent and aesthetically pleasing

�roughout the task, they could remove cuts, add extra cuts, select framings for each shot, and
apply or remove FEPs. �ere was no time limit set for the task. Participants could choose whether
or not to use FEPs for the task.

A�er the task, a post-test questionnaire was �lled to gather feedback on the application, and on
the usefulness of FEPs.

6.2 Results
Some edited sequences produced by participants can be seen in the accompanying video. On
average, users completed their task in about half an hour, with a maximum time of about 40
minutes. �e sequences produced by the participants varied greatly from the original �lm clip,
generally with shorter shot lengths, and a larger variety of framing choices.

In the post-task questionnaire, we asked participants to rank on a Likert scale of 1 (strongly
disagree) to 5 (strongly agree) the following statements:

• A. Concerning the application: (1) I’m satis�ed with the output (2) �e tool is easy to use
(3) It’s easy to predict the e�ect of commands (4) �e tool is e�ective in creating sequences.

• B. Concerning FEPs: (5) It’s easy to work with FEPs (6) FEPs did not limit creativity (7)
FEPs produced good results (8) I understand how to apply FEPs (9) FEPs helped convey
emotions.

�e overall impression of the tool was mostly positive. Figure 15 and 16 summarize the results of
the post-survey questionnaire. One �lm professional chose not to use the FEPs and felt that he was
thus unable to evaluate statements (5) to (9). Table 2 shows how many times each FEP was applied
in total for each group, and in parentheses, the number of people from the group that used the FEP.

�e amateur group was more enthusiastic in terms of applying FEPs, each person using an
average of 4.6 FEPs for a sequence of 23 shots. �ough two participants commented on the di�culty
to understand how to apply the FEPs, the general feedback for this group was positive, appreciating

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 0, No. 0, Article 0. Publication date:
August 2018.

0:20 Hui-Yin Wu, Francesca Palù, Roberto Ranon, and Marc Christie

Table 2. Number of times each FEP was used by each group (and in parentheses, the number of participants
in the group that used the FEP).

FEP Professionals Amateurs
Same-size 1 (1) 6 (5)
Intensify 0 (0) 13 (8)
Frameshare 0 (0) 8 (5)
Opposition 2 (2) 18 (5)
Shot-Reverse-Shot 4 (2) 6 (4)

the pedagogical aspect of FEPs, and mentioning that they in�uenced the framings they chose and
allowed them to explore ideas they never had before. It was noted that a large number of participants
did not �nd it easy to work with FEPs. �is could be expected, as the concept of �lm cinematography
language would be relatively new to them. Nevertheless, as shown in the accompanying demo
video, we found that with the assistance of the application, amateur video editors were able to
make use of FEPs to create sequences that had similar shots as professionals, but with their own
distinct styles. Users with some professional 3D animation and graphics backgrounds found the
interface accessible and easy to use, and were moderately pleased with the tool, though many
recommended adding more advanced functions to edit and create their own framings.

Fig. 15. Users general impressions on the tool (easy of use, e�ectiveness) and on the perceived quality of
their produced sequence.

Opinions of professional �lmmakers were more polarized. Most of them felt that the editing
functions were limited, and the provided FEPs too rigid for professional use, and as a result, they
relied on them much less than the amateurs (Table 2). �e feedback was within our expectations, as
professional users with su�cient �lm knowledge would probably already have a desired edit to the
sequence without aid from the system, and as the system was designed to be as simple as possible,
it provides limited editing functions for �ne-tuning each shot. Despite this, all the participants in
this group reacted warmly towards the idea of incorporating �lm knowledge as FEPs, and the ease
of creating an acceptable edit. In the post-task survey, one �lm director re�ected positively that the
FEPs “represent some of the most used cinematographic conventions since the beginning of the story of
editing.” It was also mentioned multiple times how easy it was to make a edit and the experimental

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 0, No. 0, Article 0. Publication date:
August 2018.

Thinking Like a Director: Film Editing Pa�erns for Virtual Cinematographic Storytelling 0:21

Fig. 16. Users general impressions on FEPs.

aspect of FEPs, which would especially bene�t novices of �lm editing. �eir response validated
that FEPs is a good representation of �lm knowledge for the purpose of assisted creativity, and that
FEPs can express common �lm idioms and editing techniques that these professionals frequently
use in their �lms.

Indeed, the number and types of FEPs provided was probably too limited to cover all user styles
and preferences. �is suggests that an application should provide users with the possibility of
designing their own FEPs, or maybe even automatically detect them from user-provided examples.

7 LIMITATIONS AND FUTUREWORK
�e Film Editing Pa�erns language provides a simple way to de�ne complex editing constraints for
automatic detection and enforcement of cinematographic pa�erns. However, the visual features
currently available in the vocabulary are limited to the size, position, angle and number of actors
on-screen, and there are many other features that are essential to cinematographic storytelling,
including lighting, sound, and staging, that we currently do not take into account when designing
pa�erns. With respect to camerawork, another notable limitation is the absence of properties
and relations that refer to camera movement. While, for previsualization tasks and rough edits,
camera movement might not be fundamental, we plan to overcome this limitation by expanding
the FEP vocabulary with common movement properties, and incorporating the idea of camera
path keyframes in the framing database that can be implemented by various camera movement
algorithms.

Our interactive application was designed with ease of use and familiarity of the �lm language in
mind. As a prerequisite though, the application requires pre-designed 3D animations and assets,
which may be hard to come by. However, given the growing availability of 3D content in asset
stores, this seems less and less of a concern.

�e editing pa�erns presented in this paper are just examples that mainly come from �lm
textbooks. We foresee that our techniques can be improved and extended greatly with the collection
of data through video processing techniques, and learning techniques to discover other common
editing pa�erns that directors use in �lms. By releasing both our dataset and the animated scene,
we hope that easily accessible resources for this application can be expanded on in the future.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 0, No. 0, Article 0. Publication date:
August 2018.

0:22 Hui-Yin Wu, Francesca Palù, Roberto Ranon, and Marc Christie

Technically, extra FEPs and framings can be easily achieved by modifying the XML �les that de�ne
our framing and FEP database.

In our evaluation, we targeted a diverse user group incorporating people of various levels
of editing experience. In the post-task questionnaire, we found that our tool is best targeted
towards people with mid- to low-professional experience in �lmmaking: students of �lm, amateur
�lmmakers, 3D animators. Our professional users, though the response towards the tool was mostly
positive, commented also on the restrictions of the tool, notably the inability to design their own
camera positions, or design di�erent FEPs. Others suggestions mentioned elements non-related to
the editing (e.g. audio, animation, staging). �e addition of non-editing features will require closer
future collaboration with �lm educators and practitioners to tailor the tool to their speci�c needs.

8 CONCLUSION
In this paper, we have proposed the concept of Film Editing Pa�erns, which are evolving elements of
visual style over (long) sequences of shots. We have shown how the language and design of FEPs is
linked to actual �lm theory and studies both by detecting the �lm editing pa�erns in annotated data,
and by creating an editing application that uses them for smart editing guidance. Our application
was evaluated by both �lm professionals and amateurs. �e evaluation has provided encouraging
results, especially for non-expert users.

REFERENCES
[1] 1998. Structured Representation and Automatic Indexing of Movie Information Content. Pa�ern Recognition 31, 12

(1998), 2027–2045.
[2] Dan Amerson and Shaun Kime. 2005. Real-time cinematic camera control for interactive narratives. In ACM SIGCHI

International Conference on Advances in computer entertainment technology. ACM Press, 369–369.
[3] William H. Bares, Joël P. Grégoire, and James C. Lester. 1998. Realtime constraint-based cinematography for complex

interactive 3D worlds. In �e National Conference On Arti�cial Intelligence. Citeseer, 1101–1106.
[4] William H Bares, Somying �ainimit, and Sco� Mcdermo�. 2000. A Model for Constraint-Based Camera Planning. In

AAAI Spring Symposium. Stanford.
[5] David B. Christianson, Sean E. Anderson, Li-wei He, David H. Salesin, Daniel S. Weld, and Michael F. Cohen. 1996.

Declarative camera control for automatic cinematography. AAAI Conference on Arti�cial Intelligence (1996).
[6] Nicolas Davis, Alexander Zook, Brian O’Neill, Brandon Headrick, Mark Riedl, Ashton Grosz, and Nitsche Michael.

2013. Creativity support for novice digital �lmmaking. Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (2013), 651–660.

[7] Steven M. Drucker and David Zeltzer. 1994. Intelligent camera control in a virtual environment. In Graphics Interface
�94. 190–199.

[8] David K. Elson and Mark O. Riedl. 2007. A Lightweight Intelligent Virtual Cinematography System for Machinima
Production. In 3rd Conference on Arti�cial Intelligence and Interactive Digital Entertainment. Palo Alto, California, USA.

[9] �entin Galvane, Marc Christie, Rémi Ronfard, Chen-Kim Lim, and Marie-Paule Cani. 2013. Steering Behaviors for
Autonomous Cameras. Proceedings of Motion on Games - MIG ’13 (2013), 93–102.

[10] �entin Galvane, Rémi Ronfard, Christophe Lino, and Marc Christie. 2015. Continuity Editing for 3D Animation. In
AAAI Conference on Arti�cial Intelligence (AAAI Press). Austin, Texas, United States.

[11] Li-Wei He, Michael F. Cohen, and David H. Salesin. 1996. �e virtual cinematographer: a paradigm for automatic
real-time camera control and directing. In SIGGRAPH ’96: Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques. ACM Press, 217–224. h�ps://doi.org/10.1145/237170.237259

[12] Arnav Jhala and R. Michael Young. 2010. Cinematic Visual Discourse : Representation , Generation , and Evaluation.
IEEE Transactions on Computational Intelligence and AI in Games 2, 2 (2010), 69–81.

[13] Donald E. Knuth, James H. Morris, and Vaughan R. Pra�. 1977. Fast Pa�ern Matching in Strings. In SIAM Journal on
Computing. 323–350.

[14] Mackenzie Leake, Abe Davis, Anh Truong, and Maneesh Agrawala. 2017. Computational Video Editing for Dialogue-
Driven Scenes. ACM Transactions on Graphics 36, 4 (2017). h�ps://doi.org/10.1145/3072959.3073653

[15] Christophe Lino and Marc Christie. 2015. Intuitive and E�cient Camera Control with the Toric Space. Transactions on
Graphics 34, 4 (2015).

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 0, No. 0, Article 0. Publication date:
August 2018.

https://doi.org/10.1145/237170.237259
https://doi.org/10.1145/3072959.3073653

Thinking Like a Director: Film Editing Pa�erns for Virtual Cinematographic Storytelling 0:23

[16] Christophe Lino, Marc Christie, Fabrice Lamarche, G Scho�eld, and Patrick Olivier. 2010. A Real-time Cinematography
System for Interactive 3D Environments. In 2010 ACM SIGGRAPH Eurographics Symposium on Computer Animation.
139–148.

[17] Christophe Lino, Marc Christie, Roberto Ranon, and William H Bares. 2011. �e director’s lens: an intelligent assistant
for virtual cinematography. In 19th ACM International Conference on Multimedia. 323–332.

[18] Zeeshan Rasheed, Yaser Sheikh, and Mubarak Shah. 2005. On the use of computable features for �lm classi�cation.
IEEE Transactions on Circuits and Systems for Video Technology 15, 1 (2005), 52–63.

[19] Rémi Ronfard, Gandhi Vineet, and Laurent Boiron. 2013. �e Prose Storyboard Language. In AAAI Workshop on
Intelligent Cinematography and Editing.

[20] M. Svanera, S. Benini, N. Adami, R. Leonardi, and A. B. Kovcs. 2015. Over-the-shoulder shot detection in art �lms. In
International Workshop on Content-Based Multimedia Indexing, Vol. 2015-July.

[21] Wallapak Tavanapong and Junyu Zhou. 2004. Shot Clustering Techniques for Story Browsing. IEEE Transactions on
Multimedia 6(4) (2004), 517–527.

[22] Roy �ompson and Christopher J Bowen. 2009. Grammar of the Shot.
[23] Jihua Wang and Tat-Seng Chua. 2003. A cinematic-based framework for scene boundary detection in video. �e Visual

Computer 19, 5 (2003), 329–341.
[24] Hui-Yin Wu and Marc Christie. 2016. Analysing Cinematography with Embedded Constrained Pa�erns. In Proceedings

of 2016 Eurographics Workshop on Intelligent Cinematography and Editing.
[25] Hui-Yin Wu, �entin Galvane, Christophe Lino, and Marc Christie. 2017. Analyzing Elements of Style in Annotated

Film Clips. In Proceedings of 2017 Eurographics Workshop on Intelligent Cinematography and Editing. Lyon, France, 7.
h�ps://doi.org/10.2312/wiced.20171068

[26] Herbert Ze�l. 2007. Sight, sound, motion: Applied media aesthetics. Wadsworth Publishing Company.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 0, No. 0, Article 0. Publication date:
August 2018.

https://doi.org/10.2312/wiced.20171068

	Abstract
	1 Introduction
	2 Related Work
	3 Film Editing Patterns
	3.1 Framing Properties
	3.2 Shot Relations
	3.3 FEP Language Syntax
	3.4 Examples of Common FEPs

	4 FEP for Film Analysis
	5 FEP for Interactive Editing
	5.1 FEP Solver

	6 User Evaluation
	6.1 Experimental procedure
	6.2 Results

	7 Limitations and Future Work
	8 Conclusion
	References

