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The Dual Mechanisms of Control (DMC) account (Braver, 2012) proposes two distinct
mechanisms of cognitive control, proactive and reactive. This account has been
supported by a large number of studies using the AX-CPT paradigm that have
demonstrated not only between-group differences, but also within-subjects variability
in the use of the two control mechanisms. Yet there has been little investigation of task
manipulations that can experimentally modulate the use of proactive control in healthy
young adults; such manipulations could be useful to better understand the workings
of cognitive control mechanisms. In the current study, a series of three experiments
demonstrate how individuals can be systematically biased toward and away from
the utilization of proactive control, via strategy training and no-go manipulations,
respectively. These results provide increased support for the DMC framework, and
provide a new basis from which to examine group-based differences and neural
mechanisms underlying the two control modes.

Keywords: cognitive control, Dual Mechanisms of Control, proactive control, AX-CPT, strategy training, no-go
manipulation

INTRODUCTION

Humans rely heavily on cognitive control, the ability to use contextual information such as task
goals to regulate behavior, particularly when adapting to the demands of complex tasks. However,
understanding how cognitive control is implemented in practice has proven to be a major challenge
in cognitive psychology. A growing body of research suggests that cognitive control is not, in fact, a
unitary ability (e.g., Miyake et al., 2000; Engle and Kane, 2004; Badre, 2008; Banich, 2009). Instead,
a recently developed framework – the Dual Mechanisms of Control (DMC) framework – suggests
that cognitive control may operate via two distinct mechanisms: proactive control, referring to the
active maintenance of contextual information to effectively bias cognitive processing in advance;
and reactive control, referring to the selective retrieval of contextual information only when needed
(Braver et al., 2007; Braver, 2012).

These two modes of control have different advantages and limitations. For example, proactive
control is often more effective, but it is more demanding; it also typically requires predictive
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contextual cues to prepare the behavioral response in advance
and depends on the validity of these cues (Braver et al.,
2007). Proactive and reactive control are also associated with
different patterns of neural activity: participants using proactive
control demonstrate more anticipatory and sustained activity
in the lateral prefrontal cortex (PFC), presumably reflecting
the active maintenance of contextual information; conversely,
reactive control is associated with increased transient activation
throughout a wider frontoparietal network (e.g., Paxton et al.,
2008; Braver et al., 2009).

Considerable support for the DMC framework has come
from the study of variability in the use of cognitive control
mechanisms, and especially variability across populations. For
example, the tendency to use proactive control is reduced in
young children (Chatham et al., 2009; Brahmbhatt et al., 2010),
healthy older adults (Braver et al., 2001; Paxton et al., 2008;
Bugg, 2014), older adults with Alzheimer-type dementia (Braver
et al., 2005), and schizophrenic patients (Barch et al., 2001,
2003; MacDonald and Carter, 2003; Edwards et al., 2010).
Conversely, it has been argued that individuals with high working
memory capacity show an increased tendency toward proactive
control (Redick, 2014; Richmond et al., 2015). Participants
also demonstrate intra-individual variability related to affective-
motivational factors, such as in the presence of incentives (Locke
and Braver, 2008; Chiew and Braver, 2013) or following induction
of positive affect (Dreisbach, 2006; van Wouwe et al., 2011).

The study of variability in the use of proactive and
reactive control has provided support for the DMC framework
in numerous ways (see Braver, 2012). However, it also
has shortcomings: for example, comparing participants from
different populations (such as schizophrenia patients and control
participants) creates the potential to confound cognitive control
with other factors that vary across the samples. Likewise, the
use of affective-motivational manipulations, though critically
important for the study of the interplay between emotion
and cognition, complicates interpretations because affect and
cognitive control demonstrate complex interactions (Botvinick
and Braver, 2015; for an example, Braem et al., 2013). Thus,
there is an important need to demonstrate that participants can
be induced to shift control mechanisms through experimental
manipulations that influence cognitive processing, such as
strategic instructional emphasis or stimulus-induced attentional
biases.

The introduction of experimental manipulations that can
modulate control levels in healthy individuals would find
wide application in a range of research questions. In the
context of neuroimaging, for example, inducing participants
to use one specific mode of control is required to properly
isolate the neural substrates of proactive and reactive control.
Being able to experimentally modulate cognitive control could
also be very useful for studies interested in between-group
comparisons: for example, healthy participants and patients
with schizophrenia are known to differ in their tendency to
spontaneously implement proactive control (Barch et al., 2001,
2003; MacDonald and Carter, 2003; Edwards et al., 2010),
but it would be interesting to know if these two groups
still demonstrate behavioral and neural differences when both

induced to refrain from engaging in proactive control. Likewise,
experimental manipulations would allow studies focused on
individual differences in cognitive control to use the powerful
experimental-correlational approach. For example, the higher
performance of participants with high working memory capacity
has been attributed to a higher tendency to implement proactive
control (Redick, 2014; Richmond et al., 2015); this hypothesis
could be confirmed by examining the relationship between
working memory and performance when all participants are
induced to use proactive control. With these applications in
mind, the purpose of the present set of experiments was to
validate two different experimental manipulations designed to
induce shifts in the use of proactive control in healthy young
adults, for use in further studies. These two manipulations were
developed in the context of the AX-CPT, the paradigmatic task
for the DMC framework.

The AX-CPT Paradigm
The AX-CPT experimental paradigm has been used in the
majority of past research investigating proactive and reactive
control, partly because of its simple design and applicability
in a wide range of populations (Barch et al., 2009; Chatham
et al., 2009; Braver, 2012). The task is an adaptation of the
classic Continuous Performance Test (CPT; Rosvold et al.,
1956) developed to emphasize cognitive control by increasing
control demands through the use of contextual cues (Servan-
Schreiber et al., 1996; MacDonald, 2008). The AX-CPT requires
participants to respond to a probe on the basis of a preceding cue.
Each trial presents a cue letter followed by a probe letter presented
after a delay period. Participants are tasked with making a target
response when they detect the “AX” sequence (an A cue followed
by an X probe), and a non-target response to all other letter
sequences (AY trials: an A cue followed by any probe other than
X, BX trials: any cue other than A followed by an X probe, and
BY trials: any cue other than A followed by any probe other than
X). A critical feature of the design is that A cues and X probes are
strongly associated due to a large proportion of AX trials, leading
both to an increased target expectancy following an A cue, and to
a prepotent target response tendency when presented with an X
probe.

The AX-CPT is highly sensitive to the control mode adopted
by participants, in that proactive and reactive control are
associated with different patterns of performance in the task
(Braver et al., 2007). Participants using proactive control actively
maintain contextual information related to the identity of the
cue during the delay period, which allows them to prepare a
target response if the cue is an A or a non-target response if
the cue is not an A. This advance preparation strategy translates
into better performance on BX trials, where the X is unlikely
to serve as a convincing lure because the non-target response
is already prepared, but worse performance on AY trials where
participants incorrectly prepare a target response. Conversely,
participants using reactive control selectively retrieve contextual
information when the probe appears, which translates into
heightened interference on BX trials, but better performance on
AY trials.
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Inducing Cognitive Control Shifts in the
AX-CPT
Several prior studies have successfully induced participants
to preferentially engage proactive control in the AX-CPT by
providing explicit training with a proactive strategy (Paxton
et al., 2006; Braver et al., 2009; Edwards et al., 2010).
The training involved specific labeling and utilization of
contextual information from the cue, in order to anticipate
and prepare the probe response ahead of time. Participants
in the strategy training condition demonstrated a shift toward
proactive control, indicated by improved performance on BX
trials and decreased performance on AY trials (Paxton et al.,
2006; Braver et al., 2009; Edwards et al., 2010), and by
an increase in sustained activation in the dorsolateral PFC
during the delay period of the task (Braver et al., 2009;
Edwards et al., 2010). However, this method has only been
tested in small samples from populations that are known
to have cognitive control and AX-CPT impairments, such
as older adults (Paxton et al., 2006; Braver et al., 2009)
and schizophrenic patients (Edwards et al., 2010); strategy
training could conceivably be inappropriate for participants
who demonstrate a higher baseline level of proactive control.
Therefore, our first objective was to evaluate the validity of
proactive strategy training in a large non-clinical sample of young
adults.

Fewer studies have tried to induce participants to reduce
utilization of proactive control. Some studies have tried to present
irrelevant distractor letters during the delay period of the AX-
CPT to disrupt the active maintenance of contextual information
and impair proactive control in participants (Braver et al., 2001;
Dreisbach, 2006; Fröber and Dreisbach, 2016). However, it is
unclear whether this manipulation actually induces participants
to refrain from using proactive control, or whether it merely
affects performance by decreasing the effectiveness of proactive
control. Another study included no-go trials in the AX-CPT, in
conjunction with a penalty manipulation (Braver et al., 2009).
Participants were required to withhold their response on no-
go trials (which occurred with low frequency and unpredictably
during probe presentation), and were assessed a monetary
penalty when they failed to do so. The hypothesis was that this
manipulation would deter participants from using a proactive
strategy, as preparing a response in advance would elicit more
errors on the no-go trials. The no-go/penalty manipulation
seemed successful in discouraging a proactive strategy, in that
participants performed worse on BX trials in this condition
and demonstrated a reduction in sustained activity in the
dorsolateral PFC during the delay period of the task. This
work has important shortcomings, however. First, it was only
tested in a small sample of 16 participants in the context of
a neuroimaging study. Second, the no-go manipulation failed
to demonstrate significant effects on most behavioral indices of
performance, presumably due to the small sample size. Third, it
is unclear whether monetary penalties are a necessary component
of the induction; it would be useful to determine whether no-
go trials are effective in the absence of incentives, especially
because this would allow for interpretations that do not require

invocation of motivational mechanisms. Therefore, our second
objective was to assess the validity of the no-go manipulation
to bias participants away from proactive control in a larger
sample of healthy young adults, without the use of monetary
incentives.

In summary, the set of experiments presented here aimed to
validate two methods for experimentally manipulating cognitive
control in the AX-CPT. Experiment 1 tested whether strategy
training can be used to increase the use of proactive control,
Experiment 2 tested whether no-go trials can be used to
decrease the use of proactive control, and Experiment 3 tested
the combination of both manipulations in the same task.
A significant feature of the experiments reported here is that
they were performed at different universities, and that minor
aspects of the AX-CPT (such as the presence of feedback after
each trial, the precise length of the inter-stimulus interval, and the
total number of trials) were varied across experiments: given that
many variants of the AX-CPT have been used in past research,
it was of interest to verify that our findings were not artifacts
due to specific task or sample features. Procedural changes across
experiments are documented in Appendix A. Relevant material
for all experiments in this article (including task scripts and data
files) can be accessed via the Open Science Framework platform
at osf.io/6sqvw/.

EXPERIMENT 1

The aim of Experiment 1 was to validate a version of the AX-
CPT that induced proactive control by extending the strategy
training method developed in earlier studies to a population
of non-clinical young adults. Healthy young participants were
expected to demonstrate a high level of proactive control at
baseline (Paxton et al., 2008; Braver et al., 2009; Edwards et al.,
2010), and strategy training was expected to bolster proactive
control even further.

Method
Statistical Power
The required sample size was estimated with a power
analysis using G∗Power 3.1 (Faul et al., 2007). Based on
prior work (Paxton et al., 2006; Edwards et al., 2010),
we expected effect sizes ranging between η2

p = 0.15 and
η2

p = 0.20 for the effect of strategy training on measures
of interest. The necessary sample size to detect an effect
size of η2

p = 0.15 with 0.95 power was estimated to be
N = 77.

Participants
A sample of 78 students at Princeton University completed the
experiment in exchange for partial course credit or payment
($12.00 per hour). All participants were native English speakers
between the ages of 18 and 26 (M = 19.6 years, 30 male
and 49 female). The experiment was approved by an ethics
committee (Princeton University institutional review board); all
participants provided written informed consent in accordance
with the declaration of Helsinki.
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Materials
AX-CPT
A version of the AX-CPT was constructed and implemented
using E-prime software (Schneider et al., 2002). The version of
the AX-CPT used in this study was based on the version used
by Braver et al. (2009). Each trial began with a cue. The cue was
a letter (any letter except X, K, or Y) presented in the center of
the screen for 1000 ms. An unfilled inter-stimulus interval of
4000 ms followed. After the inter-stimulus interval, the probe
appeared. The probe was a letter (any letter except A, K, or Y)
presented in the center of the screen for 500 ms. Following the
probe, a row of asterisks appeared during the 1000 ms inter-trial
interval. Participants were instructed to press the target button
with the middle finger of their right hand as quickly as possible
whenever they observed an A cue followed by an X probe, and to
press the non-target key with the index finger of the right hand as
quickly as possible whenever they observed any other letter pair.
Participants were instructed to respond only once they observed
the second letter in the pair (i.e., the probe). Responses to the
probe stimuli were recorded with a time limit of 1500 ms.

The proportions of trial types were based on those used by
Richmond et al. (2015): 40% of the trials in each task block
consisted of an A followed by an X (AX trials), 10% of the trials
in each block consisted of an A followed by a letter other than
X (pseudo-randomly selected; AY trials), 10% of the trials in
each block consisted of a letter other than A (pseudo-randomly
selected) followed by an X (BX trials), and 40% of the trials in
each block consisted of a letter other than A (pseudo-randomly
selected) followed by a letter other than X (pseudo-randomly
selected; BY trials)1. Trials within each block were presented
randomly.

Data processing
Error rates and average response times (RTs; computed for
correct responses only) were recorded separately for each of the
four trial types (AX, AY, BX, and BY). Three additional indices
reflecting the use of proactive control were also computed: the
d′-context, the A-cue bias, and the Proactive Behavioral Index
(PBI). The first two indices, d′-context and A-cue bias, are based
on signal detection theory (Stanislaw and Todorov, 1999). The
d′-context index was calculated by computing a d′ index from
hits on AX trials and false alarms on BX trials as Z(H) − Z(F),
with H representing hits on AX trials, F representing false alarms
on BX trials, and Z representing the z-transform of a value. This
measure reflects the ability of the participants to use contextual
information from the cue to drive their answer on the probe (e.g.,
Barch et al., 2001). An A-cue bias measure was also calculated
(Richmond et al., 2015) by computing a c criterion from hits on

1This repartition of trial types differs from the original AX-CPT, which includes
70% of AX trials and 10% of each of the other trial types. Similar effects would
be expected for the original AX-CPT, and both versions seem to usually yield
comparable results. However, the modified version used by Richmond et al. (2015)
has the desirable effect of equating the overall frequencies of A cues, B cues, X
probes, and Y probes, thus removing possible confounds associated with first-order
frequency effects. This design also maintains expectancy effects, since it leaves the
conditional probability of target responses relatively unaffected (e.g., 80% of A cues
are followed by an X in the modified version, as opposed to 87.5% in the original
AX-CPT).

AX trials and false alarms on AY trials as 1/2*(Z[H]+ Z[F]), with
H representing hits on AX trials and F representing false alarms
on AY trials2. This measure reflects the tendency of participants
to make a target response following an A cue, independently of
the identity of the probe. The third index was the PBI (Braver
et al., 2009), calculated as (AY − BX)/(AY + BX). This index
reflects the relative balance of interference between AY and BX
trials: a positive PBI reflects higher interference on AY trials,
indicating proactive control, whereas a negative PBI reflects
higher interference on BX trials, indicating reactive control. The
PBI was computed separately for error rates (based on average
error rates on AY and BX trials) and for RTs (based on average
RTs on AY and BX trials); a composite PBI was also computed
by averaging the PBIs obtained for error rates and RTs after
standardization. The standardization was performed by using the
average and standard deviation calculated over both conditions of
the AX-CPT to allow for comparison between the two. In order to
correct for trials where error rates were equal to zero, a log-linear
correction was applied to all error rate data prior to computing
the d′-context, the A-cue bias and the PBIs (as in Braver et al.,
2009; see also Hautus, 1995). This correction was applied as error
rate= (number of errors+ 0.5)/(number of trials+ 1).

These three derived indices were of interest for two major
reasons. First, they have been used in a large share of research
based on the AX-CPT (e.g., Cohen et al., 1999; Barch et al.,
2001; Braver et al., 2001, 2005, 2009; MacDonald and Carter,
2003; Paxton et al., 2008; Edwards et al., 2010; Richmond et al.,
2015). Second, they provide an efficient way of summarizing
the involvement of proactive control because they combine
information from multiple trial types in a single measure. For
example, one condition may be associated with slowing on both
AY and BX trials, but BX trials may be slowed to a greater extent
than AY trials; this shift in the balance between trial types is
typically interpreted as a reduced use of proactive control (e.g.,
Barch et al., 2003; MacDonald and Carter, 2003; Braver et al.,
2005; Redick and Engle, 2011), and directly translates into a
lower PBI.

Strategy training
The strategy training procedure was based on the methods used
by Paxton et al. (2006). The training comprised three steps:
participants were informed that an X probe was very likely to
follow an A cue; they were asked to mentally prepare for a target
response during the inter-stimulus interval whenever they saw
an A cue, and to prepare for a non-target response otherwise;
and they were trained to implement this advance preparation
strategy in a series of 60 practice trials. Details of the procedure
and corresponding instructions are described in Appendix A.

Procedure
Participants underwent two experimental sessions 4–14 days
apart in groups of up to six participants. During the first session,
participants received detailed instructions for the AX-CPT. After

2This formula for response bias actually follows Snodgrass and Corwin (1988)
rather than the more usual formula (−1/2∗(Z[H]+Z[F]). This is to emphasize
that more liberal target response biases would be associated with higher positive
numbers.
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receiving instructions, they viewed a demonstration of multiple
trial types in which the correct response was displayed on the
screen. Following the demonstration, participants completed 10
practice trials. The experimenter observed participants during
the practice trials to ensure that they were completing the
task correctly. All participants were able to understand the
instructions and perform the task correctly during the practice.
The participants then completed four blocks of 50 trials of
the AX-CPT for a total of 200 trials (80 AX, 20 AY, 20
BX, 80 BY). The data from this first session were used as
a baseline. During the second session, participants completed
a first block of 50 trials identical to the first session, then
received the strategy training and completed the corresponding
practice trials. They then completed three blocks of 50 trials
of the AX-CPT for a total of 150 trials; these trials were
identical to the baseline version of the AX-CPT completed during
the first session. The order of the two testing sessions could
not be counterbalanced because a strategy training performed
first would presumably have transferred to a baseline session
performed second.

Results
Two participants were excluded from the sample because they
had very high error rates (one had >40% errors on AX trials,
the other had 100% errors on AY trials), suggesting that they
either failed to understand the instructions or could not perform
the task successfully. The final sample included 76 participants.
Descriptive statistics for the AX-CPT as a function of task
condition are presented in Table 1 and illustrated in Figures 1
and 2.

Relative to the baseline AX-CPT, participants in the strategy
training condition were expected to demonstrate greater
proactive control, as indicated by worse AY performance, better
BX performance, and higher PBI, d′-context, and A-cue bias
values. All analyses were conducted using the general linear
model. For error rates, the main effect of task condition

TABLE 1 | Descriptive statistics for the AX-CPT as a function of task
condition (Experiment 1).

Dependent variable Trial type Baseline
condition

Strategy training
condition

Average error rate AX 0.054 (0.055) 0.060 (0.062)

AY 0.136 (0.103) 0.208 (0.155)

BX 0.045 (0.066) 0.044 (0.077)

BY 0.022 (0.042) 0.020 (0.039)

Average RT AX 404 (65) 381 (63)

AY 509 (80) 492 (85)

BX 378 (96) 341 (78)

BY 373 (72) 349 (86)

PBI-errors 0.376 (0.365) 0.503 (0.356)

PBI-RTs 0.155 (0.074) 0.184 (0.055)

d′-context 3.34 (0.67) 3.39 (0.86)

A-cue bias 0.297 (0.288) 0.410 (0.345)

Average values with standard deviations in parentheses. PBI-errors, PBI calculated
on errors; PBI-RT, PBI calculated on median response times.

FIGURE 1 | Average error rates in the AX-CPT as a function of trial
type and task condition (Experiment 1). Error bars represent
within-subjects standard errors of the mean (Morey, 2008).

FIGURE 2 | Average response times in the AX-CPT as a function of trial
type and task condition (Experiment 1). Error bars represent
within-subjects standard errors of the mean.

(baseline or strategy training) was significant, F(1,75) = 5.76,
MSE = 0.009, p = 0.019, η2

p = 0.07, indicating higher error
rates after strategy training. Importantly, the two-way interaction
between task and trial type was significant, F(3,225) = 12.10,
MSE = 0.004, p < 0.001, η2

p = 0.14, indicating that the pattern
of performance differed in the baseline and the strategy training
conditions (Figure 1). As predicted, follow-up t-tests revealed
that participants made more errors on AY trials after strategy
training, t(75) = −3.95, p < 0.001, η2

p = 0.17, indicating an
increased tendency to use proactive control in this condition.
Surprisingly, however, error rates on BX trials were unaltered,
t(75)= 0.08, p= 0.933, η2

p = 0.00.
For RTs, the main effect of task condition was significant,

F(1,75) = 17.02, MSE = 5512, p < 0.001, η2
p = 0.18, reflecting

a general speeding of RTs after strategy training. The two-
way interaction between trial type and task condition was also
significant, F(3,225) = 2.82, MSE = 909, p = 0.040, η2

p = 0.04,
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indicating that strategy training differentially affected RTs for the
different trial types (Figure 2). Participants were significantly
faster after strategy training on both BX and AY trials (both
ps < 0.05). However, relative to baseline, participants were 36 ms
faster on average on BX trials after strategy training (SD= 74 ms),
but they were only 17 ms faster on AY trials (SD = 65 ms).
This greater improvement on BX trials is again consistent with
an increased tendency to use proactive control after strategy
training.

The effect of task condition was significant for the PBI
calculated on RTs, F(1,75) = 9.85, MSE = 0.003, p = 0.002,
η2

p = 0.12, the PBI calculated on errors, F(1,75) = 6.50,
MSE = 0.094, p = 0.013, η2

p = 0.08, and the composite PBI,
F(1,75) = 12.89, MSE = 0.200, p < 0.001, η2

p = 0.15, indicating
that participants were significantly more likely to use proactive
control in the strategy training condition compared with the
baseline condition. Importantly, both the PBI calculated on RTs
and the PBI calculated on errors were significantly greater than
zero in baseline as well as after strategy training (all ps < 0.001),
indicating a heavily proactive profile in both conditions. There
was no effect of task condition on the d′-context, F(1,75) = 0.21,
MSE = 0.395, p = 0.645, η2

p = 0.00, reflecting the fact that
strategy training did not influence BX error rates. However, the
main effect of task condition was significant for the A-cue bias,
F(1,75)= 5.38, MSE= 0.090, p= 0.023, η2

p= 0.07, indicating that
participants had a higher tendency to prepare a target response
after an A cue following strategy training, consistent with an
increased use of proactive control.

One limitation of the procedure used here is that strategy
training was confounded with practice: participants always
completed the baseline condition first and the strategy training
condition second. This confound may be problematic in certain
populations: for example, it has been shown that older adults
tend to shift toward proactive control with practice in the AX-
CPT (Paxton et al., 2006). To control for this potential problem, a
final series of analyses was conducted to confirm that the strategy
training impacted performance above and beyond practice. The
results are detailed in Appendix A. Overall, the data indicated that
the effect of strategy training was not attributable to a practice
effect: all measures of interest demonstrated a specific effect
of strategy training, and none of them showed a shift toward
proactive control throughout task blocks prior to training.

Discussion
The strategy training manipulation appeared to be successful in
influencing AX-CPT performance across a number of metrics. In
particular, there was a sharp uptick in AY error rates, as well as
an increased A-cue bias. These effects suggest that participants
were able to implement the instructed strategy, in that they had
an increased bias to prepare a target response following the
A-cue. This pattern is consistent with increased utilization of
proactive control. Regarding RTs, strategy training improved BX
trials more than AY trials, also in line with our predictions. This
conclusion was further supported by the consistently significant
effects in the PBI, an index of proactive control developed
in Braver et al. (2009), which reflects a relative shift in the

balance of interference from BX trials (reflecting reliance on
reactive control) to AY trials (reflecting reliance on proactive
control). As such, these findings replicate the results of prior
studies investigating the impact of strategy training in increasing
proactive control in the AX-CPT (Paxton et al., 2006; Braver et al.,
2009; Edwards et al., 2010). Additionally, they extend this prior
work by demonstrating that the strategy manipulation can be
successfully employed in healthy young adults. Further analyses
indicated that these effects were not attributable to practice, and
specifically followed strategy training.

The main limitation of Experiment 1 is the within-
subjects design, with participants always completing the baseline
condition first and the strategy training second. Although
supplemental analyses suggested that the observed effects were
actually due to strategy training rather than practice, it would be
of interest to confirm the results using a between-subjects design;
to our knowledge, this has not been attempted with young adults
(but see Paxton et al., 2006, for a study with older adults). It is also
worth mentioning that participants completed the experiment
either for payment or for course credit, which could conceivably
lead to different patterns of performance (Botvinick and Braver,
2015); this issue was avoided in Experiment 2 and Experiment
3. Lastly, a surprising aspect of the present results is that all but
one of the anticipated effects appeared. We expected to observe
direct improvement of BX performance, and a related increase of
the d′-context, following strategy training. This beneficial effect
of proactive control in reducing interference from the X-probe
did not occur, despite the significant effects of training on other
measures.

One possibility to explain the lack of improvement in BX
performance is that participants were already prone to using
proactive control at baseline, thus masking any improvement
on BX trials; this idea is consistent with the fact that young
healthy adults generally serve as a “proactive control group” when
compared to older adults or pathological samples (e.g., Paxton
et al., 2008; Braver et al., 2009; Edwards et al., 2010). Specifically,
if participants already had a strong tendency to use proactive
control at baseline, their performance on BX trials may have been
high enough that further improvement would have been difficult
to notice. Congruent with this idea, examining the descriptive
statistics revealed that participants made on average less than
5% of errors on BX trials, which amounts to less than a single
error throughout the task. In fact, half the participants (37 out of
79) made no error at all in the baseline condition. By contrast,
participants were much slower and made almost three times as
many errors on AY trials. In the following study, we explored
the use of a task manipulation that was implemented to reduce
the utilization of proactive control, and in so doing, to bring BX
performance off ceiling.

EXPERIMENT 2

Experiment 1 suggested that strategy training is an effective
method to induce participants to use proactive control.
Conversely, the first objective of Experiment 2 was to validate
a version of the AX-CPT that decreased the use of proactive
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control. To this end, additional no-go trials were interspersed
throughout the AX-CPT, similar to the procedure used by Braver
et al. (2009). In contrast to Braver et al. (2009), the effectiveness of
the no-go manipulation was tested in a large sample and without
the use of additional monetary incentives. A second objective of
Experiment 2 was to determine whether decreasing the utilization
of proactive control through no-go trials could take performance
off of ceiling levels for BX trials, thus providing a more sensitive
assessment of cognitive control.

In no-go trials, the probe was a digit rather than a letter;
participants were required to not respond at all whenever they
viewed a digit as the probe. Importantly, no-go trials could start
with any letter as the cue, which means they were not predictable.
As a consequence, the presence of no-go trials reduced the
predictive utility of the contextual cues by making response
alternatives more uncertain: in contrast to the classic AX-CPT,
a trial starting with a B-cue did not automatically require a non-
target response, and a trial starting with an A-cue was less likely
to require a target response. The introduction of no-go trials
was therefore expected to reduce the tendency of participants to
utilize proactive control to actively prepare a response during the
inter-stimulus interval, and to elicit a corresponding pattern of
increased BX interference and decreased AY interference.

Method
Statistical Power
The required sample size was estimated with a power analysis
using G∗Power 3.1 (Faul et al., 2007). Based on data reported
in Braver et al. (2009), we expected an effect size of η2

p = 0.70
for the effect of no-go trials on the PBI computed on RTs and
η2

p = 0.16 for the composite PBI. The necessary sample size to
detect an effect size of η2

p = 0.16 with 0.95 power was estimated
to be N = 72. All participants who signed up for the study within
1 week completed the protocol.

Participants
A sample of 95 undergraduate students at the University of
Savoy completed the experiment in exchange for partial course
credit. All participants were native French speakers between
the ages of 17 and 25 (M = 20.18 years; 21 males and 74
females) with no history of neurological disorders and without
psychoactive medication. The approval of an ethics committee
was not required for this experiment under local regulations;
all participants provided written informed consent prior to
completing the protocol, in accordance with the declaration of
Helsinki.

Materials
Baseline AX-CPT
The task was similar to the version used in Experiment 1, with a
number of minor task parameter changes. Each trial comprised
a cue presented for 500 ms, a 3500 ms delay period, a probe
presented for 500 ms, and a 1000 ms unfilled inter-trial interval.
Participants were required to respond to all stimuli, including
both cues and probes to ensure encoding of the cues (Paxton
et al., 2008). Responses were made by pressing either a blue key
with the index finger (for cues and for non-target responses)

or a yellow key with the middle finger (for target responses).
To help participants keep track of the order of stimuli within a
trial, cues were selected among a first set of letters (E, G, P, R, S,
and A) and probes were selected among a different set of letters
(F, J, M, Q, U, and X); cues were always presented in blue font
whereas probes were presented in white (for a similar procedure,
Henderson et al., 2012). Participants received audio feedback
after each response (with three different sounds indicating a
correct response, an incorrect response, or a response that was
too slow). The relative frequencies of the different trial types was
based on Richmond et al. (2015) as in Experiment 1, but with a
reduced number of total trials (40 AX, 10 AY, 10 BX, 40 BY).

No-Go AX-CPT
The no-go condition of the AX-CPT was identical to the baseline
version except that additional no-go trials were interspersed
throughout the task. In the no-go trials, the probe took the form
of a digit (any digit from 1 to 9) rather than a letter; participants
were instructed to withhold their response altogether whenever
they observed a letter followed by a digit. The audio feedback
included a fourth sound in this condition, indicating an error
corresponding to any response on a no-go trial. The go trial
types were matched in number and proportion to the baseline
condition (40 AX, 10 AY, 10 BX, 40 BY), and an additional 24 no-
go trials were added, intermixed with go trials. Half of the no-go
trials began with an A cue, and half of the no-go trials began with
a B-cue (signaled by any letter other than A). Thus, no-go trials
could not be predicted from the cue.

Procedure
Participants completed the experimental session in groups of up
to eight participants. They completed one block of trials for the
baseline version of the AX-CPT and one block of trials for the
no-go version; the order of the two blocks was counterbalanced.
Participants completed 100 trials in the baseline AX-CPT and
124 trials in the no-go AX-CPT. Trials were presented in the
same pseudo-random order for all participants. The order was
defined so that there were no series of more than five consecutive
AX trials or two consecutive trials of another type. Each task
block was preceded by a practice session including 12 trials, with
trial frequencies similar to the following task block. The practice
session was repeated until participants reached 70% accuracy.

Results
Three participants were excluded from the sample because they
had very high error rates (two participants had > 40% errors
on AX trials, the third had 100% errors on BX trials). The final
sample included 92 participants. Descriptive statistics for the AX-
CPT as a function of task condition are presented in Table 2 and
illustrated in Figures 3 and 4.

Relative to the baseline condition, participants in the no-
go condition were expected to demonstrate reduced proactive
control, as indicated by better AY performance, worse BX
performance, and lower PBI, d′-context, and A-cue bias values.
All analyses were conducted using the general linear model.
To control for possible order effects, the order of the two task
blocks (baseline followed by no-go versus no-go followed by
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baseline) was entered as a predictor in all analyses; the analyses
yielded comparable results without this covariate. For error
rates, the main effect of experimental condition was significant,
F(1,90) = 31.49, MSE = 0.007, p < 0.001, η2

p = 0.26, reflecting
a higher error rate in the no-go condition. Importantly, the
two-way interaction between task block and trial type was also
significant, F(3,270)= 48.79, MSE= 0.006, p < 0.001, η2

p = 0.35,
indicating that the pattern of performance as a function of trial
type differed in the standard and in the no-go condition of
the AX-CPT (Figure 3). As predicted, participants made more
errors on BX trials in the no-go condition, F(1,90) = 86.53,
MSE = 0.011, p < 0.001, η2

p = 0.49, and marginally fewer errors
on AY trials, F(1,90) = 3.19, MSE = 0.009, p = 0.077, η2

p = 0.03,
consistent with a reduced tendency to use proactive control in
this condition.

For RTs, the main effect of the task condition was significant,
F(1,90) = 480.81, MSE = 3063, p < 0.001, η2

p = 0.84, reflecting
a general slowing in RTs in the no-go condition. The two-way
interaction between task block and trial type was also significant,
F(3,270) = 50.34, MSE = 1360, p < 0.001, η2

p = 0.36 (Figure 4).
The no-go condition elicited slowing on both BX and AY trials
(both ps < 0.001). However, relative to baseline, participants were
on average 137 ms slower on BX trials in the no-go condition
(SD= 100 ms), whereas they were only 79 ms slower on AY trials
(SD = 48 ms). These results are again consistent with a reduced
tendency to use proactive control.

The PBIs were lower in the no-go condition than in the
baseline condition, indicating a lower tendency to use proactive
control in the no-go condition; this was true for the PBI
calculated on RTs, F(1,90) = 64.01, MSE = 0.005, p < 0.001,
η2

p = 0.42, the PBI calculated on error rates, F(1,90) = 57.11,
MSE = 0.136, p < 0.001, η2

p = 0.39, and the composite PBI,

TABLE 2 | Descriptive statistics for the AX-CPT as a function of task
condition (Experiment 2).

Dependent variable Trial type Standard condition No-go condition

Average error rate AX 0.043 (0.049) 0.058 (0.062)

AY 0.100 (0.118) 0.078 (0.091)

BX 0.058 (0.083) 0.201 (0.158)

BY 0.010 (0.018) 0.013 (0.021)

NGA – 0.164 (0.141)

NGB – 0.265 (0.175)

Average RT AX 384 (43) 433 (55)

AY 464 (54) 543 (58)

BX 374 (88) 511 (107)

BY 351 (59) 443 (52)

PBI-errors 0.113 (0.446) −0.279 (0.422)

PBI-RTs 0.117 (0.088) 0.038 (0.089)

d′-context 3.13 (0.58) 2.46 (0.70)

A-cue bias 0.257 (0.276) 0.163 (0.297)

Average values with standard deviations in parentheses. NGA, no-go trials starting
with an A-cue; NGB, no-go trials starting with any other cue. Average response
times were not calculated for no-go trials because making any response on these
trials reflected an error. Additionally, errors in no-go trials were not frequent enough
to provide a reliable estimate of response times.

FIGURE 3 | Average error rates in the AX-CPT as a function of trial
type and task condition (Experiment 2). Error bars represent
within-subjects standard errors of the mean.

FIGURE 4 | Average response times in the AX-CPT as a function of trial
type and task condition (Experiment 2). Error bars represent
within-subjects standard errors of the mean.

F(1,90) = 122.16, MSE = 0.279, p < 0.001, η2
p = 0.58. The

PBI computed on errors was significantly greater than zero
in the baseline (p = 0.017) and became significantly lower
than zero in the no-go condition (p < 0.001), suggesting a
decreased reliance on proactive control (or an increased reliance
on reactive control). The d′-context was also lower in the no-
go condition than in the standard condition, F(1,90) = 67.56,
MSE= 0.300, p < 0.001, η2

p = 0.43, reflecting decreased efficiency
in using contextual information from the cue to drive responses
to the probe in the no-go condition. Lastly, the A-cue bias was
lower in the no-go condition than in the baseline condition,
F(1,90)= 5.89, MSE= 0.070, p= 0.017, η2

p= 0.06, indicating that
participants were less likely to prepare a target response following
an A cue in the no-go condition.

Discussion
Adding no-go trials to the AX-CPT successfully shifted
participants away from using proactive control. As predicted,
no-go trials elicited the opposite effect of the strategy training
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method used in Experiment 1: participants demonstrated worse
performance on BX trials and marginally improved performance
on AY trials, although the predicted improvement again failed
to reach significance. The no-go manipulation also slowed BX
trials more than AY trials, consistent with our predictions.
Importantly, the fact that the manipulation differentially affected
AY and BX trials confirms that it had an effect on proactive
control: if no-go trials had merely increased task demands by
introducing a new trial type, we would have expected to observe
lower performance on all trial types indiscriminately. Derived
measures such as the PBI also confirmed reduced utilization
of proactive control in the presence of no-go trials, thereby
replicating prior work by Braver et al. (2009). The current
results extended the prior work by showing the validity of
the manipulation in a much larger sample, and by removing
monetary penalties for no-go errors. Thus, the success of
the no-go manipulation is not dependent on the presence of
motivational incentives or punishment. These results were also
replicated in an additional experiment conducted in parallel with
Experiment 2 (see Appendix B).

Importantly, the results also demonstrated that the no-go
manipulation was successful in taking BX performance off of
ceiling levels, as reflected by the reduction in d′-context and
increase in BX interference. This finding suggests that the no-go
AX-CPT might be a more sensitive paradigm than the traditional
version to clearly detect the influence of task manipulations
such as proactive strategy training in healthy young adults. In
Experiment 3, we took advantage of this possibility to provide a
more powerful test of the effects of strategy training on proactive
control.

EXPERIMENT 3

Experiment 1 suggested that strategy training could be used
to induce participants to utilize proactive control, whereas
Experiments 2 indicated that including no-go trials in the AX-
CPT reduced the reliance on proactive control. The objective of
Experiment 3 was to strengthen our conclusions by combining
these two approaches. Specifically, we hypothesized that in
Experiment 1 participants may have already been fairly successful
at engaging proactive control under baseline conditions, which
would make the strategy training manipulation less sensitive
in detecting changes in these processes. If this interpretation
is correct, it should be possible to observe stronger effects
of strategy training on proactive control if participants were
not at ceiling levels at baseline. Based on the results of
Experiment 2, one potentially powerful approach would be to
treat the no-go condition as the AX-CPT baseline, and apply
strategy training to this condition. With this condition as the
baseline, we predicted a more substantial effect of proactive
control training, in terms of not only increased AY interference,
but also improved performance on BX trials. Experiment 3
tested this hypothesis. Participants completed a baseline AX-
CPT including no-go trials, underwent strategy training, and
completed the same version of the AX-CPT a second time.
Thus, Experiment 3 provided an integrative test of the effect

of no-go trials and strategy training. As a secondary means
of establishing the validity of the strategy training, participants
also completed a short questionnaire evaluating their perception
of the training and its influence on their behavior during the
task.

Method
Statistical Power
The required sample size for this study was estimated with a
power analysis using G∗Power 3.1 (Faul et al., 2007). Effect sizes
for the comparison between no-go and baseline conditions in
Experiment 2 were on average η2

p = 0.35; a comparison between
no-go and strategy training conditions was expected to yield even
stronger effects. The necessary sample size to detect an effect size
of η2

p= 0.35 with 0.95 power was estimated to be N = 28. Funding
was allocated for 35 participants, who all completed the study.

Participants
A sample of 35 students at Washington University in Saint Louis
completed the experiment in exchange for payment ($10.00 an
hour). All participants were native English speakers (12 males
and 23 females; mean age = 20.90 years). The experiment
was approved by an ethics committee (Washington University
institutional review board); all participants provided written
informed consent in accordance with the declaration of Helsinki.

Materials
AX-CPT
The task was similar to the version presented in Experiment 2,
with the following changes: the delay period was lengthened to
4500 ms, the inter-trial interval was lengthened to 1500ms, and
a larger set of cue and probe letters was used (A, C, D, E, F, G,
H, M, N, P, T, U, and X), excluding all letters bearing a perceptual
similarity with digits. No-go trials were present in the task, similar
to Experiment 2: these trials were signaled by the probe being
a digit (any digit from one to 9nine) rather than a letter. The
frequencies of the different trial types within each task block were
comparable to Experiment 2.

Strategy training
The strategy training was similar to Experiment 1. Participants
were first informed that an A cue would be followed by an
X probe 80% of the time. They were then asked to mentally
prepare the most likely response to the probe during the interval
following the cue. Lastly, participants were trained to implement
this advance preparation strategy during practice trials. In a
first phase, the experimenter completed 14 practice trials by
pressing the response buttons; at the same time, the participant
had to say out loud “yellow” (indicating the target response
key) during the delay period if the cue was an A and “blue”
(indicating the non-target response key) if the cue was not an
A. In a second phase, the participant completed a series of 24
practice trials by pressing the response buttons themselves; they
still had to say “yellow” or “blue” out loud during the delay
period.
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Strategy training questionnaire
To ensure that the strategy training had an actual influence on the
strategy used in the task, participants were required to complete
a short questionnaire at the end of the session. The questionnaire
comprised five questions; participants had to respond to each
question by indicating their answer on a 9-point scale ranging
from “not at all” to “completely.” The following questions were
asked in random order:

(1) Did you try to follow the strategy instructions during the
task?

(2) Do you think the strategy training influenced the way you
performed the task?

(3) Did you have trouble following the strategy instructions
during the task?

(4) Were you already using the advance preparation strategy in
the previous version of the task?

Procedure
Participants completed the testing session individually. The
protocol was divided into two sessions separated by 1 week;
participants completed the no-go version of the AX-CPT in
the first session and the strategy training version in the second
session. They completed four blocks of 48 trials for each version
of the AX-CPT, for a total of 192 trials per condition, each
composed of 160 go-trials (64 AX, 16 AY, 16 BX, 64 AY) and 32
no-go (16 preceded by A-cue, 16 by B-cue). Trials were presented
in random order with the constraint that there could be no more
than two consecutive AY trials, BX trials, no-go trials with an
A cue, or no-go trials with a B cue. The no-go AX-CPT was
preceded by 12 practice trials, which were repeated until the

TABLE 3 | Descriptive statistics for the AX-CPT as a function of task
condition (Experiment 3).

Dependent variable Trial type No-go condition No-go + strategy
training condition

Average error rate AX 0.077 (0.074) 0.089 (0.106)

AY 0.081 (0.094) 0.278 (0.245)

BX 0.203 (0.155) 0.133 (0.139)

BY 0.019 (0.041) 0.030 (0.060)

NGA 0.100 (0.100) 0.248 (0.228)

NGB 0.180 (0.137) 0.373 (0.254)

Average RT AX 417 (51) 387 (72)

AY 516 (43) 515 (78)

BX 519 (102) 431 (99)

BY 443 (47) 391 (65)

PBI-errors −0.293 (0.457) 0.219 (0.552)

PBI-RTs 0.005 (0.084) 0.096 (0.076)

d′-context 2.44 (0.88) 2.73 (1.04)

A-cue bias 0.083 (0.311) 0.419 (0.480)

Average values with standard deviations in parentheses. NGA, no-go trials starting
with an A-cue; NGB, no-go trials starting with any other cue. Average response
times were not calculated for no-go trials because making any response on these
trials reflected an error. Additionally, errors in no-go trials were not frequent enough
to provide a reliable estimate of response times.

FIGURE 5 | Average error rates in the AX-CPT as a function of trial
type and task condition (Experiment 3). Error bars represent
within-subjects standard errors of the mean.

FIGURE 6 | Average response times in the AX-CPT as a function of trial
type and task condition (Experiment 3). Error bars represent
within-subjects standard errors of the mean.

participant reached at least 70% accuracy. Participants took a
short break between each task block.

Results
Two participants were excluded from the sample because they
had very high error rates (both had >40% errors on AX trials).
The final sample included 33 participants. Descriptive statistics
for the AX-CPT as a function of task condition are presented in
Table 3 and illustrated in Figures 5 and 6.

Relative to the baseline no-go condition, participants were
expected to demonstrate increased proactive control in the no-
go + strategy training condition, as indicated by worse AY
performance, better BX performance, and higher PBI, d′-context,
and A-cue bias values. That is, we expected to replicate the
proactive strategy training results of Experiment 1, with the
addition of demonstrating the decrease in BX errors that was not
found in Experiment 1.
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For error rates, the main effect of the experimental condition
was significant, F(1,32) = 5.16, MSE = 0.018, p = 0.030,
η2

p = 0.14, indicating a higher error rate following strategy
training. The two-way interaction between task and trial type
was significant, F(3,96) = 20.60, MSE = 0.010, p < 0.001,
η2

p = 0.39, indicating that the pattern of performance as a
function of trial type differed in two task conditions (Figure 5).
As predicted, follow-up t-tests indicated that participants made
more errors on AY trials in the strategy training condition,
t(32) = −5.08, p < 0.001, η2

p = 0.45, and less errors on
BX trials, t(32) = 2.11, p = 0.043, η2

p = 0.12, consistent
with an increased tendency to use proactive control in this
condition.

For RTs, the main effect of task condition was significant,
F(1,32) = 25.12, MSE = 4783, p < 0.001, η2

p = 0.44, indicating
faster RTs in the strategy training condition. The two-way
interaction between task and trial type was also significant,
F(3,96) = 18.23, MSE = 1213, p < 0.001, η2

p = 0.36 (Figure 6).
Relative to baseline, participants were significantly faster on
BX trials after strategy training (on average 88 ms faster,
SD = 81 ms, p < 0.001), but not on AY trials (on average
1 ms faster, SD = 70 ms, p = 0.936), consistent with an
increased tendency to use proactive control after strategy
training.

The effect of task condition was significant for the PBI
calculated on RTs, F(1,32) = 36.02, MSE = 0.004, p < 0.001,
η2

p = 0.53, the PBI calculated on errors, F(1,32) = 25.37,
MSE = 0.171, p < 0.001, η2

p = 0.44, and the composite PBI,
F(1,32) = 61.43, MSE = 0.258, p < 0.001, η2

p = 0.66, indicating
that participants were significantly more likely to use proactive
control following the strategy training. Interestingly, the PBI
computed on errors was significantly lower than zero in the
no-go condition, t(32) = −3.69, p < 0.001, η2

p = 0.30, and
became significantly higher than zero after strategy training,
t(32) = 2.28, p = 0.029, η2

p = 0.14. The PBI computed on RTs
did not differ from zero in the no-go condition, t(32) = 0.35,
p = 0.728, η2

p = 0.00, and also became significantly higher than
zero after training, t(32) = 7.32, p < 0.001, η2

p = 0.63. As
in Experiment 1, there was no effect of task condition on the
d′-context, F(1,32) = 2.10, MSE = 0.634, p = 0.157, η2

p = 0.06,
but the A-cue bias was significantly higher after strategy training,
F(1,32) = 16.79, MSE = 0.111, p < 0.001, η2

p = 0.34, indicating
that participants were more likely to prepare a target response
following an A cue after training.

The post-task questionnaire largely confirmed the behavioral
performance results. On average, participants reported that they
tried to follow the strategy instructions (M = 5.85, SD = 1.35,
range = 1–7 out of a possible 9) and did not have particular
trouble doing so (M = 2.64, SD = 1.56, range = 1–6 out of
9, where higher numbers indicate more difficulty following the
instructions). Participants also reported that they were already
preparing their responses in advance in the no-go AX-CPT a
moderate amount (M = 5.48, SD = 1.66, range = 1–9 out of 9),
but that the strategy instructions also moderately influenced the
way they performed the task (M = 5.00, SD = 1.60, range = 1–8
out of 9).

Discussion
The results of Experiment 3 not only replicated, but also extended
those of Experiments 1 and 2: participants demonstrated a
pattern of performance consistent with reduced proactive control
in the no-go condition, but strategy training was successful in
shifting performance toward utilization of proactive control,
as evidenced by the increased A-cue biasing effects that were
observed on both AY error rates and the A-cue bias signal
detection measure. Importantly, the inclusion of no-go trials in
the baseline condition also revealed a significant reduction in
BX interference following strategy training; this was reflected not
only in a shift of the derived PBI measure, as in Experiment 1, but
also in a significantly lower error rate along with selectively faster
RTs on BX trials. All effect sizes elicited by strategy training were
also much larger than in Experiment 1: for example, the η2

p for
the effect of strategy training on the PBI composite was 0.11 in
Experiment 1 and 0.66 in Experiment 3.

In short, these results support the idea that the inclusion of
no-go trials can effectively lower the level of proactive control
in the AX-CPT, making the task more sensitive to the detection
of strategy training effects. As such, the findings indicate that
even in healthy young adults, strategy training can provide the
full complement of behavioral performance measures previously
associated with a shift toward more-proactive control in other
populations (i.e., both an increase in A-cue interference and a
reduction in X-probe interference), provided that the AX-CPT
is made sufficiently sensitive via the inclusion of no-go trials.
The post-task questionnaire converged with these findings by
indicating that strategy training did influence how participants
performed the task and did not pose particular compliance
problems.

GENERAL DISCUSSION

In the present study, we validated two different experimental
manipulations to bias participants toward or away from proactive
control in the AX-CPT. Participants who underwent strategy
training demonstrated a shift toward proactive control, thus
replicating previous results observed in different populations
(Paxton et al., 2006; Braver et al., 2009; Edwards et al., 2010).
Conversely, adding no-go trials to the AX-CPT reduced the
use of proactive control, also replicating previous results in the
literature (Braver et al., 2009).

The results presented here are important in two major ways.
Firstly, the effects of the experimental manipulations on the
patterns of performance were entirely congruent with the DMC
account. In line with the results of Braver et al. (2009), which
first suggested that no-go trials could reduce proactive control
whereas strategy training could increase proactive control by
assessing sustained neural activity, the current results confirm
that the DMC framework provides a plausible account of the
way cognitive control operates in the context of the AX-CPT.
Secondly, our results also establish the validity of the two AX-
CPT variants in inducing shifts in the use of proactive control.
Both the no-go and the strategy training versions of the AX-CPT
had reproducible effects on performance in multiple samples
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of healthy young adults and, importantly, were observed in a
within-subjects design. The two manipulations were relatively
simple and elicited large effect sizes for error rates, RTs, and
derived measures.

Our results therefore indicate that simple variants of the
AX-CPT paradigm can contribute to future investigations
of cognitive control mechanisms, by providing experimental
situations where the functioning of specific control mechanisms
can be selectively observed. The basic principle of altering
cognitive control tasks to promote the use of one control
mechanism also extends beyond the AX-CPT. For example,
it is worth noting that the two experimental manipulations
presented here could be generalized to other cognitive control
tasks in which participants are required to respond to a target
as a function of a cue. One example is the cued task-switching
paradigm, where participants typically have to identify one of two
probes depending on which instruction is provided in a preceding
cue. Participants seem to use proactive control in this paradigm
(e.g., Bugg and Braver, 2016), and it would be straightforward to
induce proactive control shifts by training participants to actively
maintain the cued instruction (Paxton, 2011) or by implementing
no-go trials in the task.

An important point of discussion concerns the nature of
the relationship of proactive to reactive control. In particular,
a critical issue with regard to the DMC framework is whether
proactive and reactive control actually reflect partly independent
dimensions of control deployment, or instead represent opposite
ends of a single dimensional continuum. Most prior studies have
implicitly adopted the idea that control shifts are best described
as shifts along a unitary continuum (i.e., either toward proactive
control or toward reactive control). However, it could also be
the case that proactive and reactive control are partly dissociable;
that is, a participant could simultaneously use both proactive
and reactive control, or only one mechanism, or neither of the
two. This idea was described in the original account of the
DMC framework (Braver et al., 2007) and preliminary evidence
suggests that it might be correct (Gonthier et al., 2016). If it
is the case that proactive and reactive control are dissociable,
then cognitive control shifts may not be adequately described
as shifts from reactive to proactive control or the reverse;
instead, it is possible that an experimental manipulation could
influence one mechanism but not the other. In other words,
no-go trials may decrease the tendency of participants to use
proactive control without increasing their reliance on reactive
control, whereas strategy training may increase the tendency
of participants to use proactive control without affecting their
use of reactive control (although participants may tend not to
engage in reactive control if they already implement proactive
control; see Hutchison et al., 2016). This interpretation does
not fundamentally alter the nature of our conclusions – the
experimental manipulations presented here do elicit a more-
proactive and a less-proactive pattern of results – but it could
be interesting for future studies to further explore this line of
research.

The idea that proactive and reactive control may be dissociable
begs the question of whether it is possible to selectively
enhance reactive control, without an associated influence on
proactive control. According to the DMC framework, such a
manipulation should be possible, and should be characterized
in terms of a reduction in X-probe error interference, without
the associated increased in A-cue interference, but potentially
involving X-probe RT slowing (i.e., a shift from heightened BX
errors to relatively slowed BX responding). Indeed, in a prior
study, we argued that this behavioral profile best characterized
healthy “young-old” adults (65–75 years old; Braver et al., 2005).
This possibility also illustrates the critical fact that more attention
is needed regarding the precise meaning of the various indices
of performance in the AX-CPT. For example, the PBI measure
used throughout the present study integrates variation on AY
and BX trials into a single index; as a result, this index would
conflate variation in proactive and reactive control if the two
are in fact dissociable. For this reason, future research on the
AX-CPT should strive to achieve better understanding of the
precise effects of shifts in proactive and reactive control on
performance.

CONCLUSION

Through a series of experiments, we demonstrated that it
is possible to bias healthy young adults toward or away
from proactive control using different variants of the AX-CPT
paradigm. The results are congruent with the DMC account,
and they suggest that modified versions of the AX-CPT have the
potential to contribute to future investigations of the cognitive
and neural mechanisms underlying cognitive control.
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