$\Lambda$-buildings associated to quasi-split groups over $\Lambda$-valued fields - Centre de mathématiques Laurent Schwartz (CMLS)
Pré-Publication, Document De Travail Année : 2020

$\Lambda$-buildings associated to quasi-split groups over $\Lambda$-valued fields

Résumé

Let $\mathbf{G}$ be a quasi-split reductive group and $\mathbb{K}$ be a Henselian field equipped with a valuation $\omega:\mathbb{K}^{\times}\rightarrow \Lambda$, where $\Lambda$ is a totally ordered abelian group. In 1972, Bruhat and Tits constructed a building on which the group $\mathbf{G}(\mathbb{K})$ acts provided that $\Lambda$ is a subgroup of $\mathbb{R}$. In this paper, we deal with the general case where there are no assumptions on $\Lambda$ and we construct a set on which $\mathbf{G}(\mathbb{K})$ acts. We then prove that it is a $\Lambda$-building, in the sense of Bennett.
Fichier principal
Vignette du fichier
main.pdf (1.14 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02430546 , version 1 (07-01-2020)
hal-02430546 , version 2 (16-06-2020)
hal-02430546 , version 3 (01-02-2024)

Identifiants

Citer

Auguste Hébert, Diego Izquierdo, Benoit Loisel. $\Lambda$-buildings associated to quasi-split groups over $\Lambda$-valued fields. 2020. ⟨hal-02430546v1⟩
461 Consultations
187 Téléchargements

Altmetric

Partager

More