Robust ordinal regression for subsets comparisons with interactions - Faculté des Sciences de Sorbonne Université
Journal Articles European Journal of Operational Research Year : 2025

Robust ordinal regression for subsets comparisons with interactions

Abstract

This paper is devoted to a robust ordinal method for learning the preferences of a decision maker between subsets. The decision model, derived from Fishburn and LaValle (1996) and whose parameters we learn, is general enough to be compatible with any strict weak order on subsets, thanks to the consideration of possible interactions between elements. Moreover, we accept not to predict some preferences if the available preference data are not compatible with a reliable prediction. A predicted preference is considered reliable if all the simplest models (Occam’s razor) explaining the preference data agree on it. Following the robust ordinal regression methodology, our predictions are based on an uncertainty set encompassing the possible values of the model parameters. We define a new ordinal dominance relation between subsets and design a procedure to determine whether this dominance relation holds. Numerical tests are provided on synthetic and real-world data to evaluate the richness and reliability of the preference predictions made.
Fichier principal
Vignette du fichier
OrdinalRobustRegression24.pdf (1.38 Mo) Télécharger le fichier
Origin Publication funded by an institution
licence

Dates and versions

hal-04677617 , version 1 (18-09-2024)

Licence

Identifiers

Cite

Hugo Gilbert, Mohamed Ouaguenouni, Meltem Öztürk, Olivier Spanjaard. Robust ordinal regression for subsets comparisons with interactions. European Journal of Operational Research, In press, 320 (1), pp.146-159. ⟨10.1016/j.ejor.2024.07.021⟩. ⟨hal-04677617⟩

Relations

17 View
0 Download

Altmetric

Share

More