Machine learning for optimal electrode wettability in lithium ion batteries - Réseau sur le Stockage Electrochimique de l'Energie
Article Dans Une Revue Journal of Power Sources Advances Année : 2023

Machine learning for optimal electrode wettability in lithium ion batteries

Résumé

Electrode wetting is a critical step in the Lithium-Ion Battery manufacturing process. The injection of electrolyte in the electrodes’ porosity requires the application of pressure-vacuum pumping strategies without warranty that the full porosity will be fully occupied with electrolyte at the end of this process step. The electrode wettability strongly depends on the contact angle between the electrolyte and the electrode, the electrode microstructure characterized by its porosity, pore network and tortuosity factor, the electrolyte viscosity and density. Computational fluid dynamics approaches such as the Lattice Boltzmann Method can provide relevant information of the filling process, yet these approaches come with significant computational cost. The use of machine learning techniques can provide surrogate models for the optimization of this multi-parameter process that depends on both chemical and physical properties. Within this context, we propose a general workflow for realizing this objective and provide detailed simulation-based experiments. These physics-informed surrogate models open the path to tractable, rapid solutions of parameter identification and design optimization problems. They also provide a general workflow for applications on other optimal battery material design problems.

Domaines

Matériaux
Fichier principal
Vignette du fichier
1-s2.0-S2666248523000069-main.pdf (7.44 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
licence

Dates et versions

hal-04083600 , version 1 (23-09-2024)

Licence

Identifiants

Citer

Amina El Malki, Mark Asch, Oier Arcelus, Abbos Shodiev, Jia Yu, et al.. Machine learning for optimal electrode wettability in lithium ion batteries. Journal of Power Sources Advances, 2023, 20, pp.100114. ⟨10.1016/j.powera.2023.100114⟩. ⟨hal-04083600⟩
122 Consultations
7 Téléchargements

Altmetric

Partager

More